

Tekniska lösningar för återanvändbara stålkonstruktioner (samverkanskonstruktioner)

M. Veljkovic, Dep. Engineering Structures Steel and Composite Structures

Stålbyggnadsdagen, online 22 oktober 2020

Content

Existing solutions: Sustainable or not.

- "Circularity in construction", how old is that phrase?
- Circularity of steel construction sector, case study examples, NL
- What have we learned from TUD experiments?
- What do you think about the future?

HOW SUSTAINABLE IS THE CURRENT PRACTICE IN CONSTRUCTION SECTOR?

- Construction sector:
 - 23% of CO₂ emission globally ¹
 - 36% of the waste generated (EU)²

Source: BCSA. Data generated from TRADA/BCSA/WRAP analysis

² (Waste statistics https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Total_xaste_generation)

TRADITIONAL STEEL-CONCRETE COMPOSITE STRUCTURES VS. DEMOUNTABLE

- Composite action through welded headed studs
 - Optimized cross-section design
 - Cast in-situ, non-demountable connection

CRYSTAL PALACE, HYDE PARK 1851-1854

CRYSTAL PALACE, SYDENHAM 1854-1936

REUSE OF STEEL STRUCTURES

CS1-NL

1958

20XX

t

DESIGN FOR DEMOUNTABILITY: CS2-NL DISTRIBUTION CENTER, SCHIPHOL AIRPORT

- 100% circular design (2016):
 - Steelframe : bolted connections
 - Cladding :screwed connections
 - Precast flooring not structurally connected to steel frame
- -> 100% demountable + re-useable

Moreover further facilitate re-use:

- Modular dimensions
- Material passport for future re-use

DEMOUNTABLE COURTHOUSE AMSTERDAM

CS3-NL

100% circular design:

- Steelframe : bolted connections
- flooring: demountable connection
- -> 100% demountable + re-use- able

 Lease model : Contractor retains ownership

TEMPORARY PARKING LEIDEN

CS4-NL

Tata Steel Quantum demountable flooring system

TECHNICAL SOLUTION FOR SUSTAINABLE COMPOSITE FLOOR SYSTEMS

Large prefabricated concrete deck (2.7 x 8 m x 0.15 m)

Mass ca 7 t

+

Steel beam

- Deviations
- Slip during execution
- Execution speed

$$\overset{\longleftarrow}{d_{\text{hole}}}$$

$$d_{\text{hole}} \approx d_{\text{connector}} + (12 - 15 \text{ mm})$$

Based on Monte-Carlo simulation of member deviations

PRE-CASTED "LARGE CONCRETE" DECKS

- Mock-up of two bays of one floor of a car park building
 - Tapered steel beams
 - Large prefabricated concrete decks, mass 7t

Hole alignment: Longitudinal direction

- Deck
- Beam
- Deformation
 - End-slip

Based on measurements and FE results Hole clearance 12mm

Hole alignment: Transversal direction

Measurements:

- Connector c.t.c distance
- Beam spacing
 - Construction braces

OPTIMIZATION OF MECHANICAL BEHAVIOUR

ENSURING COMPOSITE SHEAR INTERACTION

Overhead resin injection

Overhead injection

- 150 bolts
- 30sec/bolt
- Minor air inclusions

Prevent adhesion

Office building – cost comparison

- Cost increase with span length
- Wider slab most economical
- Transportation limitation
- IPE to HE

System	Span	Average cost increase
Prefabricated solid slab	6m - 12m	70%
	12m - 20m	45%
Composite slab (demountable)	6m - 20m	5%

RENOVATION AND NEW BRIDGES

STEEL INTENSIVE STRUCTURES IN FUTURE

Expectations:

- Lower costs for maintenance
- Lower costs for investment

4R approach in design:

- Reduce (energy and resources)
- Reuse (multiple lifetime)
- Remanufacture (restoring)
- Recycle (change in physical form)

https://www.tudelft.nl/citg/over-faculteit/afdelingen/engineering-structures/sections-labs/steel-and-composite-structures/research/research-lines/design-for-reuse/reduce/

STOR TACK TILL:

- Bauke Hoekstra Bonnema, Tata Steel Ijmuiden, for case study stories
- Martin Nijgh, PhD candidate, for his research years at TUD, 2021 PhD
- Marko Pavlovic, Assit. Prof. TUD, for examples with FRP deck
- MSc students, TUD, for their efforts in the Stevin 2 lab and MSc thesis work
 https://repository.tudelft.nl/islandora/search/veljkovic?collection=education
 https://repository.tudelft.nl/islandora/search/pavlovic?collection=education
- REDUCE PROJECT PARTNERS, RFCS project 2016-2019

Steel Construction Institute (UK) (project coordinator), University of Luxembourg (Luxembourg), Tata Steel (NL), AEC3 (UK, Germany), Bouwen met Staal (NL), University of Bradford (UK) and Lindab S.A. (Luxembourg)

