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Abstract

During excavations, steel sheet piles are often installed through vibratory driving, to
establish a retaining wall that resists soil instability and ground water leakage. The
method of vibratory driving is that the sheet pile is driven into the soil with a vertical
vibratory motion. This is especially effective in soft soils. In parts of Sweden, however,
the most common type of soil is the glacial till, which is generally compact and contains
a large range of grain sizes, where cobbles and boulders are not unusual. Thus, when
installing sheet piles in glacial till, there is a risk of impact with objects of high stiffness,
which may result in damage to the sheet piles. Any damage to the sheet piles may
result in insufficient soil stability and ground water resistance, requiring additional
expensive measures to regain it. Hence, there is a need for a stop criterion that can
be used to detect these hazardous situations, and that stops the driving before the
sheet pile is severely damaged. The purpose of the dissertation is to investigate how
numerical models may be used to simulate a situation where a sheet pile encounters
a boulder during vibratory driving, and to investigate the possibility of developing a
stop criterion based on these numerical models.

Three different numerical models were created to simulate the vibratory driving: a
single degree of freedom (SDOF) model, a uniaxial multi degree of freedom (MDOF)
model, and a finite element (FE) model. The SDOF model and uniaxial MDOF
model was created and simulated using the numeric computing platform MATLAB.
The FE model was created and simulated using the FE analysis software Abaqus. The
simulations were carried out through explicit time integration in all three models. The
external actions on the sheet pile, i.e., the vibrator force, soil resistances and obstacle
resistances were estimated with methods found in literature. The models were then
calibrated against a field study by using the results from that field study as input in
the models. The encounter with a rigid object (boulder), was simulated in different
ways. In the SDOF model and uniaxial MDOF model, the encounter was simulated
with an elasto-plastic contact force. In the FE model, a solid body with high stiffness
representing a boulder was introduced, and the encounter was simulated by driving
the sheet pile into the solid body, resulting in repeated impacts.

The results of the numerical models show promising resemblance with the results of
the field study. Both the global driving speeds and the accelerations of the sheet pile
corresponds well with the reference case for all three models. This suggests that rather
simple numerical models may be used to simulate vibratory driving of sheet piles.
In addition, the simulations indicate that impacts may be detected through abrupt
changes in acceleration amplitude along the sheet pile, created from the compression
waves ensuing an impact. This suggest that a future stop criterion for vibratory driving
could be based on a change in acceleration amplitude. Such a stop criterion could be
enforced by attaching accelerometers to the sheet piles, and creating a system that
will cease the driving when a significant increase in acceleration amplitude is detected.
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Sammanfattning

Vid markarbeten installeras st̊alspont ofta genom vibrationdriving, för att åstadkomma
en stödkonstruktion som motverkar jordras och grundvattenläckage. Vibrationsdriv-
ning innebär att sponten drivs ner i jorden med en vertikal vibrationsrörelse. Detta
är framför allt effektivt vid drivning i lättpackade jordar. I delar av Sverige är dock
den vanligast förekommande jordarten morän, som generellt är väldigt kompakt och
inneh̊aller ett stort intervall av kornstorlekar, där stenar och block inte är ovanligt
förekommande. S̊aledes, vid drivning i morän finns det en risk för kollision med objekt
av hög styvhet som kan orsaka skada p̊a sponten. Därför finns det ett behov av ett
stoppkriterium som kan upptäcka dessa riskfyllda situationer och stoppa drivningen
innan sponten tar allvarlig skada. Syftet med detta examensarbete är att undersöka
ifall numeriska modeller kan användas till att simulera en situation där en vibrations-
driven spont kolliderar med ett block, och att undersöka möjligheten att utveckla ett
stoppkriterium utifr̊an dessa numeriska modeller.

Tre olika numeriska modeller skapades för att simulera vibrationsdrivningen: en sing-
le degree of freedom (SDOF)-modell, en enaxiell multi degree of freedom (MDOF)-
modell, och en finita element (FE)-modell. De tv̊a förstnämnda modellerna skapa-
des och simulerades i det numeriska beräkningsprogrammet MATLAB, medan den
sistnämnda modellen skapades och simulerades i FE-programmet Abaqus. Simulering-
arna genomfördes med explicit tidsintegration i alla tre modeller. Yttre laster som
p̊averkar sponten, det vill säga vibrationskrafter, jordmotst̊and och motst̊and fr̊an ett
stenblock, beräknades med metoder fr̊an litteratur. Modellerna kalibrerades sedan mot
en fältstudie genom att använda fältstudiens förutsättningar som ing̊angsvärden i mo-
dellerna. Kollisioner med styva objekt, som ett block, simulerades med olika metoder.
I SDOF-modellen och den enaxiella MDOF-modellen simulerades kollisioner med en
elastoplastisk kontaktkraft. I FE-modellen skapades en solid kropp med hög styvhet
som efterliknade ett block, och kollisioner simulerades genom att driva en spont in i
blocket.

Resultaten fr̊an de numeriska modellerna visar lovande likheter med fältförsöket. Al-
la de tre modellerna uppvisar globala neddrivingshastigheter och accelerationer som
stämmer väl överens med resultaten fr̊an fältförsöket. Detta indikerar att förh̊allandevis
enkla modeller kan användas för att simulera vibrationsdrivining av st̊alspont. Vi-
dare visar simuleringarna att kollisioner sannolikt kan detekteras genom plötsliga
förändringar i accelerationsamplitud längs med sponten. Detta indikerar att ett fram-
tida stoppkriterium för vibrationsdrivning skulle kunna baseras p̊a förändringar i ac-
celerationsamplitud. Ett s̊adant stoppkriterium skulle kunna implementeras praktiskt
genom att fästa accelerometrar p̊a sponten och skapa ett system där vibrationsdriv-
ningen avbryts när en signifikant ökning av accelerationsamplitud detekteras.
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Notations and symbols

Latin letters

a – acceleration amplitude
aci – centrifugal acceleration
Ap – sheet pile area
cb – bar velocity
cd – dilatational wave speed
C – global damping matrix
Es – Young’s modulus for steel
fd – driving frequency
fn – natural frequency for mode n
fy – yield stress
Fc – centrifugal force
Fd – driving capacity
Fl – leader force
Fm – weight of dynamic masses
Fv – unbalanced vertical force
F0 – static surcharge force
FR – friction ratio from CPT test
g – gravitational acceleration
K – global stiffness matrix
Ke – element stiffness matrix
L – empirical liquefaction factor
Lmin – smallest element size in the mesh
Lp – sheet pile length
mc – hydraulic clamp mass
mdyn – dynamic mass of vibrator and sheet pile
meb – excitor block mass
mei – eccentric mass
msp – sheet pile mass
mv – dynamic vibrator mass
m0 – bias mass
M – global mass matrix
Me – element mass matrix
Me – eccentric moment
pi – force at the time i
qd – dynamic toe resistance
ql – liquefied toe resistance
qs – static toe resistance
Qs – shaft quake
Qt – toe quake
rei – eccentric radius
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Rc – clutch resistance at the clutch between sheet piles
Rs – soil resistance along the shaft of the sheet pile
Rt – soil resistance at the toe of the sheet pile
S0 – free-hanging displacement amplitude
Srsp – realistic maximum specific displacement amplitude
Ssp – maximum specific displacement amplitude
T – crane force
Tn – period time of the highest frequency mode
ui – displacement at the time i
u̇i – velocity at the time i
üi – acceleration at the time i

Greek letters

α – mass-proportional damping constant
αr – acceleration ratio
β – stiffness-proportional damping constant
∆t – time increment
ζn – damping ratio at mode n
θ – rotation angle of eccentric mass
ρs – density of steel
τd – dynamic shaft resistance
τl – liquefied shaft resistance
τs – static shaft resistance
ω – angular frequency
ωn – natural frequency for mode n
Ωp – sheet pile perimeter
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1 Introduction

This introduction gives a background to the master’s dissertation and its purpose, and
describes the method used to achieve it. Furthermore, the dissertations limitations and
disposition are presented, as well.

1.1 Background

Retaining walls are used to prevent soil instability and ground water leakage during
excavation. Steel sheet piles are commonly used to form retaining walls, where the
soil stability and water tightness is achieved by forming a wall of interlocked sheet
piles. A common way of installing the sheet piles is through vibratory driving, which
implies that the sheet piles are driven with a vertical vibratory motion. This method
is especially convenient when sheet piles are driven through soft soil. In parts of
Sweden, however, the most common type of soil is the glacial till, which generally is
very compact and contains a large range of grain sizes, where large grains such as
cobbles and boulders are not unusual. Thus, when installing sheet piles in glacial till,
there is a risk of impact with stiff objects, which may result in damage to the sheet
piles. Experiences in the field have shown that this is a costly and time-consuming
issue, where additional measures are needed to ensure stability and water tightness as
a result of the damage. Hence, there is a need to detect hazardous situations, and to
stop the driving before the sheet pile is severely damaged. Finding a criterion to shut
down the driving is of high priority.

Vibrator unitVibrator unit

Sheet pile cross-section

Sheet pile

Damaged sheet pile toe

Boulder

Figure 1.1: Illustration of vibratory driving of a sheet pile. Illustration: Zadig B.
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1.2 Purpose and method

The purpose of the master’s dissertation is to investigate how numerical models may
be used to simulate vibratory driving of a sheet pile, including situations where rigid
objects are encountered, and to investigate the possibility of developing a stop criterion
based on these numerical simulations.

The method used to fulfil the purpose, was to establish three different numerical
models, with decreasing level of complexity, that have the ability to simulate vibratory
driving of sheet piles. These models include the behaviour of the sheet pile, the
vibratory actions from the vibrator, and the resistance from the surrounding soil.

The first step in creating the models was to research literature for suggestions regarding
how the different parts of the system should be modelled, and how the simulations
could be carried out. The literature review resulted in a decision that three different
models were to be created: a single degree of freedom (SDOF) model, a uniaxial
multi degree of freedom (MDOF) model, and a Finite Element (FE) model. It was
also decided that explicit time-integration was to be used to run the simulations.
All three models were calibrated against an experimental field study of a sheet pile
being vibratory driven, to confirm their legitimacy. Thereafter, a rigid obstacle was
introduced into the models, to simulate the effects of an impact during vibratory
driving. The resulting compressive accelerations from the impacts were then studied,
to draw conclusions regarding a potential stop criterion.

The numerical computing platform MATLAB was used to create the SDOF model
and uniaxial MDOF model, and the simulations using these models were also carried
out in MATLAB. In these two models, the impact with a rigid object was simulated
using an elasto-plastic contact force. Further studies of the vibratory parameters were
conducted with these models, to gain a better understanding of the dynamics in the
vibratory driving process.

The FE model was created and simulated using the software Abaqus. In this model,
the impact with a rigid object was simulated by vibratory driving the sheet pile into
an introduced solid body with high stiffness, mimicking an impact with a boulder.

2



1.3 Limitations

Several limitations and simplifications have been introduced in the master’s disserta-
tion:

• A specific type of vibrator and a specific type of steel sheet pile was considered.
The geometry of the considered sheet pile was simplified.

• Three different impacts were studied, using the FE model. In reality, there is a
large number of possible impacts.

• Only the behaviour of a single individual sheet pile was studied, meaning that
effects of the sheet pile interlock were neglected.

1.4 Disposition

The disposition of the master’s dissertation follows as:

• A literature review on sheet piles, vibratory driving, the occurring mechanical
behaviours during vibratory driving and previously used vibro-driveability mod-
els are presented in Chapter 2.

• Chapter 3 holds a description of the numerical procedures used in the master’s
dissertation, as well as some theory regarding dynamic material behaviour.

• A reference case, that is based upon an experimental field study of a vibratory
driven sheet pile, is showcased in Chapter 4.

• The parameters of the numerical models established in the dissertation are doc-
umented in Chapter 5, and are based upon the reference case.

• Chapter 6 describes the procedures, and the results of a FE model of vibratory
driving of a sheet pile, ending with an analysis of the results.

• Chapter 7 describes the procedures, and the results of a uniaxial MDOF model,
ending with an analysis of the results.

• Chapter 8 describes the procedures, and the results of a SDOF model, ending
with an analysis of the results.

• Chapter 9 gives a general discussion of the dissertation, as well as a comparison
of the three established models.

• Finally, concluding remarks, and suggestions for further investigations, are presen-
ted in Chapter 10.
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2 Vibratory driving of sheet piles

The literature review in this chapter aims to create an understanding of the vibratory
driving process, which is needed in order to establish the models in the later part of
the dissertation. The chapter starts with a general description of sheet piles in Section
2.1. A description of the general machinery used during vibratory driving is found
in Sections 2.2 and 2.3. The mechanical actions that are present during vibratory
driving, including soil resistance, are described in Sections 2.4 and 2.5. Finally, in
Section 2.6, some methods to predict vibro-driveability are presented.

2.1 Sheet piles and retaining walls

Sheet piles are a category of retaining walls, having as main function to prevent soil
instability during construction, and to prevent ground water flow from reaching the
excavated area [1].

Individual sheet piles are driven into the soil separately. To achieve a functioning
retaining wall, a sequent individual sheet pile is connected to the interlock of the
previous sheet pile before being installed. With added sealing, usually concrete, this
system can be considered sufficiently waterproof. Because of the interlocks, potential
additional friction between the sheet piles can interfere with the installation process
[1].

The profile of the sheet pile is designed to lower elastic deflections caused by the soil,
and to resist plastic deformation. Common steel sheet pile cross-sections that achieve
this are the z-shaped Hoesch cross-section, and the u-shaped Larssen cross-section,
seen in Figure 2.1. The interlocking mechanism between the separate sheet piles can
also been seen in the figure.

a)

b)

Figure 2.1: Illustrations of common sheet pile cross-sections: a) the z-shaped Hoesch
profile, and b) the u-shaped Larssen profile, modified after Viking [2].
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During installation, the sheet piles are driven deeper than the planned excavation
level for the ground structure, making the sheet pile wall function as a cantilever. The
horizontal soil pressure creates a moment around a rotation point at the excavation
level. This moment is being resisted by a reaction moment below the excavated level,
and the bending stiffness along the sheet pile’s length. An illustration of this can
be seen in Figure 2.2. In some situations, this resistance is not enough. Therefore,
additional horizontal stability can be contributed to the sheet pile wall by adding
either anchor ties, parallel beams, or struts [1].

If the installation of the sheet pile is unsuccessful, and a sufficient penetration depth
is not reached, or a failure mode of the sheet pile is conceived, the sheet pile wall
may not serve as a functioning retaining wall and may not provide water tightness.
Additional resources are then needed to achieve a safe and water-proof construction
site. Moreover, if large plastic deformations occurs in the sheet pile, a retraction of
it will be difficult. The deformation will cause the sheet pile to be wedged in the
surrounding soil and drag a large volume of soil with it when the sheet pile is being
retracted. This requires additional time and resources to repair the damages [2].

Excavation level

Sheet pile

Figure 2.2: Illustration of a sheet pile wall working as a cantilever, modified after
ThyssenKrupp [3].
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Sheet pile failure modes

Studies regarding failure of sheet piles during vibratory driving are, to our knowledge,
none existing. There have, however, been some studies of the failure behaviour of
impact driven offshore piles [4] [5]. These conclude a broad range of possible failure
modes, and how they are initiated. Some examples of failure modes for offshore piles
are: local axial buckling, local non-axial buckling, ovalisation, lateral ring buckling,
global buckling, denting damage, yielding, and material failure. All of these are not
relevant for vibratory driven sheet piles. Viking and Garcia Benito [6], assumes that
the following four failure modes are relevant for steel sheet piles:

• Local buckling caused by axial loading
When the tip of the sheet pile hit an obstacle centrically, axial stresses large
enough to cause buckling in the web or flanges may be induced.

• Local buckling caused by non-axial loading
When the tip of the sheet pile hit an obstacle eccentrically, non-axial stresses
large enough to cause buckling in the web or flanges may be induced.

• Extrusion buckling
When the sheet pile has buckled or have an initial deformation, and the yield
stress of the steel is exceeded, plastic deformation will occur, making the sheet
pile unusable.

• Material fracture
If enough plastic deformation occurs, and the fracture stress of the steel is ex-
ceeded, the sheet pile will fracture at its tip.

Figure 2.3 shows an example of a sheet pile that has been damaged during driving.

Figure 2.3: Damaged sheet pile, from Viking and Garcia Benito [6]. Photo: Viking K.
Example of local axial buckling and material fracture due to round boulder
encountered.
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2.2 Vibratory driving systems

There are two different general methods of vibratory driving, free-hanging systems,
and leader-mounted systems, with the latter being the most frequently used in Sweden.
Both systems are described in the following two sections, which are based on Viking
[2].

2.2.1 Free-hanging systems

Summarised, a free-hanging system is composed of five major components: a hydraulic
power source, a power transmitter, the vibratory driver and a carrying system. These
can be seen in Figure 2.4. The hydraulic power source provides the vibratory motors
with energy, and hydraulic pressure to the clamps through the power transmitter. The
vibrator and its inner components have a massive weight, meaning that a powerful
crane often is needed, hence making it a “free-hanging”-system.

Advantages with the free-hanging system are low costs during construction projects,
as a crane often is situated at larger construction sites where sheet piles are needed.
In addition, the use of a crane gives the system a large reach and mobility.

A disadvantage with the free-hanging system is that it is difficult to position correctly,
and to manoeuvre. As the vibratory system is carried by a crane, the possible down-
ward maximum static force is therefore lessened due to the upwards crane force. In
addition, there is no ability to provide a larger static surcharge force, if needed.

Figure 2.4: Illustration of a typical free-hanging system, with explanatory text, from
Viking [2].
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2.2.2 Leader-mounted systems

The leader-mounted system, that can be seen in Figure 2.5, basically works the same
way as the free-hanging system. The defining difference is that the vibrator unit is
carried by a telescopic leader, rather than by a crane. This telescopic leader is often
mounted to a regular excavator, where the power supplier and transmitter is mounted
as well.

Advantages with the leader-mounted system are a high precision and mobility, provided
by the excavator. The ability to vibrate at an angle is also possible. As the vibrator
components are mounted to a telescopic leader, the static surcharge force can be both
lowered and increased depending on the needs.

Disadvantages with the leader-mounted system are the large cost, and the lack of
ability to use the equipment to other things than vibratory driving. The increased
weight of the excavator could also result in soil instability around the construction
site. The ability to increase the static surcharge force may be a double-edged sword,
as too much additional force may result in a structural failure of the sheet pile.

Figure 2.5: Illustration of a typical leader-mounted system, with explanatory text, from
Viking [2].
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2.3 Vibrator unit

There are many different types of vibrator units from several different manufacturers,
but most of them essentially consist of the same components. This section gives a
description of the most essential parts of a vibrator unit. This section is largely based
on Viking [2].

Most vibrator units on the market today have the same four essential components: a
suppressor housing, elastomer pads, an exciter block, and a clamping device. These
components can be seen in Figure 2.6.

The suppressor housing holds all components together, while simultaneously being a
protective casing around the other more sensitive components. External forces from
the system carrying the vibrator, i.e., the crane or the leader, are exerted upon the
suppressor housing.

The elastomer pads are steel reinforced rubber pads that are attached in between the
suppressor housing and the other components. These pads work as damping isolators,
which reduces vibrations in the suppressor housing during vibratory driving. Without
them, the carrying crane or excavator could be damaged by the ongoing vibrations.
These elastomer pads may have a dampening effect on the whole dynamic structure
during vibratory driving.

The excitor block holds eccentrically rotating masses that create a harmonic vertical
force. When the vibratory driving is initiated, the eccentric masses are slowly extended
from the centre of rotation while rotating at a pre-set frequency, which increases the
magnitude of the dynamic vertical force.

The clamping device connects the sheet pile to the vibratory driver. The connection
becomes rigid, and the static surcharge- and dynamic forces are transferred into the
sheet pile. The clamp can, in addition, be made in all kinds of shapes and sizes to fit
the profile being vibratory driven.

Figure 2.6: Illustration of typical vibratory driver components, from Viking [2].
Free-hanging model to the left, eccentric masses stacked laterally, and
leader-mounted model to the right, eccentric masses stacked vertically.
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2.4 Mechanics of vibratory driving

Some understanding of the general motion of the sheet pile and the loads that are
present during vibratory driving is needed to create accurate models. The free body
diagrams in Figure 2.8 provides a visualisation of the forces that are present during
the upward and downward motion of the vibratory driving. This section contains
a description of the vibrator-related mechanical actions during the vibratory driving
process, while Section 2.5 covers the soil-related actions. This section is based on
Viking [2] unless something else is stated.

2.4.1 Vibrator forces

The driving capacity Fd is the theoretical driving force that is exerted upon the sheet
pile during vibratory driving. It can be expressed as

Fd = F0 + Fv (2.1)

where F0 is the static surcharge force, and Fv is the unbalanced vertical force. The
peak theoretical driving force Fd will occur when the unbalanced vertical force reaches
its downwards amplitude F̂v. The driving force Fd and its peak magnitude, can be
seen in Figure 2.7, where theoretical driving force is plotted versus time.
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Figure 2.7: Theoretical driving force Fd versus time, modified after Viking [2].

Static surcharge force

Depending on the vibratory method used, the magnitude of the static surcharge force
F0 will differ. For a free-hanging system, the upwards lifting force of the crane T needs
to be subtracted from the static surcharge force. For a leader-mounted system, the
hydraulic force from the leader Fl, which can be either negative or positive, is added
to the static surcharge force. The static surcharge force for a free hanging system and
a leader mounted system, respectively, can be expressed as

F0 = m0 · g − T (2.2)

F0 = m0 · g + Fl (2.3)

where m0 is the suppressor housing mass and g is the gravitational acceleration.
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Figure 2.8: Free body diagrams of a sheet pile and vibrator during upward and
downward motion, from Viking [2].
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Unbalanced vertical force

The unbalanced vertical force Fv is the resultant of the sum of centrifugal forces
Fc, generated by the eccentrically rotating masses in the vibrator. When an even
number of identical eccentric masses rotate in opposite direction to each other, the
horizontal components of the centrifugal forces cancel out. This leaves only the vertical
components, which often is referred to as the unbalanced vertical force Fv, calculated
as

Fv = Fc · sin θ (2.4)

where θ is the rotation angle of the eccentric mass.

The centrifugal force Fc is affected by two parameters: the eccentric moment Me, and
the angular frequency ω, at which the eccentric masses are rotating. Therefore, the
centrifugal force can be expressed as

Fc = mei · aci = mei · rei · ω2 = Me · ω2. (2.5)

This expression is based on Newton’s second law, where the centrifugal acceleration aci
can be expressed with the eccentric radius rei of the eccentrically rotating masses, and
the angular frequency ω, at which the eccentric masses are rotating. The eccentric
moment Me is the product of the eccentric mass mei and the eccentric radius rei.
Figure 2.9 illustrates the parameters that affect the centrifugal force.

ω

at ac

Fv

Fh

Fcθ

ω

atac

θ
Fv

Fh

Fc

Figure 2.9: Illustration of two eccentric masses rotating in the opposite direction,
modified after Viking [2].

2.4.2 Other vibrator related parameters

There are other parameters that likewise affect the dynamic behaviour of the sheet
pile. The mass of the sheet pile and the vibrator, with its components, influences
the performance of the vibratory driving. The free-hanging displacement amplitude
is another parameter that influences the behaviour during vibratory driving. These
parameters are described briefly in the following subsections.

Dynamic mass

The dynamic mass mdyn of the structure refers to the inertia of the structure’s parts
that are moving in the longitudinal direction during vibratory driving, meaning the
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mass of the excitor block meb, the hydraulic clamp mc, and the mass of the steel sheet
pile being driven msp. This can be expressed as

mdyn = meb +mc +msp. (2.6)

The mass of a structure has an immense contribution to its dynamic behaviour, af-
fecting everything from the structure’s displacements to its resonant frequencies.

Free-hanging double displacement amplitude

The free-hanging displacement amplitude S0 refers to the movement of the vibratory
unit without any additional static surcharge force being applied, and without a sheet
pile being attached to it. This is a way of characterising a vibratory unit and comparing
different vibratory products. The term maximum specific displacement amplitude
Ssp is sometimes used and is defined as the double of the free-hanging displacement
amplitude, as seen in Figure 2.10. These displacement amplitude parameters can be
expressed as

Ssp = 2S0 = 2
Me

meb +mc

(2.7)

where Me is the eccentric moment, meb is the excitor block mass, and mc is the mass
of the hydraulic clamp.
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Figure 2.10: Comparison between displacement amplitudes for a free-hanging vibratory
system, by Viking [2].

In reality, when driving through soil, the vibratory driving displacements will not be
as large as the free-hanging displacements. With the added mass from the sheet pile,
and the shaft- and toe resistance from the soil, the displacement amplitudes will be
lowered. Therefore, the sheet pile mass msp may be added to the expression, such as

Srsp =
meb +mc

meb +mc +msp

Ssp (2.8)

to get a more realistic displacement amplitude prediction.
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2.5 Soil resistance

The penetrative movement of the sheet pile is resisted by the dynamic soil resistance
along the sheet pile shaft and at the sheet pile toe. This section contains a description
of the soil resistances and how they can be estimated. Some theory regarding soil
liquefaction is also presented.

2.5.1 Soil models

Generally, there seems to be a lack of studies that have attempted to create an accurate
material model describing the variation of the shaft resistance and toe resistance during
vibratory driving of sheet piles. However, two models were found during the literature
review, and these models are presented below. Note that the models presented below
do not provide any guidance of how the amplitude values of the dynamic soil resistances
should be calculated and that a method to estimate these are presented in Section 2.5.3.

Linear soil models

Moulai-Khatir et al. [7] presented the linear soil models shown in Figure 2.11, where
the shaft resistance Rs (force) varies linearly between the maximum shaft resistance
Rs,max and minimum shaft resistance −Rs,max. The toe resistance Rt (force) varies
linearly between the maximum toe resistance Rt,max and 0.

Rs

u

Rt

uQs

Rs,max

ks

ks

−Rs,max

Rt,max

Qt

kt
kt

Figure 2.11: Variation of shaft resistance Rs, and toe resistance Rt with the displacement
u, modified after Moulai-Khatir et al. [7].

The loading and unloading stiffness for the shaft resistance is determined based on
the maximum shaft resistance Rs,max and the shaft quake Qs (maximum elastic soil
deformation) as

ks =
Rs,max

Qs

. (2.9)
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The loading and unloading stiffness for the toe resistance is determined based on the
maximum toe resistance Rt,max and toe quake Qt as

kt =
Rt,max

Qt

. (2.10)

Table 2.1 shows parameters for the linear soil model that, according to Moulai-Khatir
et al. [7], were obtained from large scale laboratory tests.

Table 2.1: Parameters for linear soil model, based on Moulai-Khatir et al. [7].

Pipe pile H pile

Toe quake, Qt 3 mm 2.8 mm
Shaft quake, Qs 2.5 mm 2.5 mm

Hyperbolic soil models

Moulai-Khatir et al. [7] also presented the hyperbolic soil models shown in Figure
2.12 where the shaft resistance τ (stress) varies between the maximum shaft resistance
τmax and minimum shaft resistance τmin. The toe resistance q (stress) varies between
the maximum toe resistance qmax and 0. The formulas describing the loading and
unloading curves for the hyperbolic soil models are included in Appendix A.1 together
with recommended soil parameters.
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q
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Figure 2.12: Variation of shaft resistance τ , and toe resistance q with the displacement u,
modified after Moulai-Khatir et al. [7].
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2.5.2 Soil liquefaction

This section contains a description of the phenomenon known as soil liquefaction, the
section is based on Viking [2]. Liquefaction is argued to be the main reason why the
method of vibratory driving steel sheet piles is the most effective installation method.

During vibratory driving, a reduction in shear-strength occurs in the soil. This occur-
rence is theorised to partially be a result of the soil mechanical phenomenon liquefac-
tion. When exposed to additional acceleration, e.g., during an earthquake or vibratory
driving, the soil grains are moved rapidly towards a new location. Furthermore, while
moving, the soil grains are temporarily carried by the internal pore water pressure.
This results in all exerted inertial forces having to go through the pore water, and
in addition, a lower effective containing stress and effective shear stress. Hence, a
reduction of the soil shear-strength will occur.

However, laboratory tests have shown that a reduction in shear-strength also occurs in
soils with no moisture. When peak accelerations of the granular soil exceed a threshold
of around 1.0–1.5g, the movement of the grains results in the effective vertical confining
stress going towards zero in magnitude. As soils are unable to withstand tension, the
separation of the soil grains concludes to no compression being able to be sustained
either. By exposing a cyclic load, as vibratory driving, to the soil, a constant reduction
in the soil shear-strength occurs. This reduction, however, becomes lesser the deeper
the sheet pile is driven, as the effective stresses are larger at a deeper penetration
depth.

Figure 2.13 illustrates how the shear-strength of the soil is reduced due to liquefaction.
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Figure 2.13: Cubically packed assemblage of soil grains affected by effective confining
stresses and effective shear stress, which gets reduced when a cyclic inertial
force is exerted on the soil. The arrows opposite to each other symbolise
inner contact forces, while the stand-alone arrows symbolise inertial forces.
Modified after Viking [2].
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2.5.3 Amplitude value of dynamic soil resistances

A method to estimate the amplitude values of the dynamic soil resistances Rs,max and
Rt,max (forces) is needed in order to utilise the soil models that were presented in
Section 2.5.1.

The method that was used in the dissertation to estimate the amplitude values of
the dynamic soil resistances was presented by Van Rompaey et al. [8]. The method
consists of four steps that estimates dynamic soil resistances by reducing static soil
resistances obtained from cone penetration tests (CPT). Each step of the method is
described below.

1. Estimate the acceleration amplitude

The acceleration amplitude a of the sheet pile is estimated based on the dynamic mass
mdyn, the vibration frequency ω, and the eccentric moment Me as

a =
Meω

2

mdyn

. (2.11)

The acceleration ratio αr is then calculated based on the acceleration amplitude as

αr =
a

g
(2.12)

where g is the standard gravity.

The acceleration ratio is later used in step 3 when estimating the dynamic soil resist-
ances, where it is used as a weighting factor. A higher acceleration amplitude results
in dynamic soil resistances weighted more towards the liquefied soil resistances while
lower acceleration amplitudes results in dynamic soil resistances weighted more toward
the static soil resistances.

2. Calculate liquefied shaft resistance and toe resistance

The liquefied soil resistances τl and ql (stresses) are calculated based on the static
soil resistances τs and qs (stresses), friction ratio FR and dimensionless empirical
liquefaction factor L as

τl = τs ·
[
(1− 1

L
) · e−

1
FR + 1/L

]
(2.13)

ql = qs ·
[
(1− 1

L
) · e−

1
FR + 1/L

]
(2.14)

where the static soil resistances are determined based on the sleeve friction fs and tip
resistance qc from CPTs. The friction ratio FR is also determined based on CPTs as
FR = 100 · fs/qc. The dimensionless empirical liquefaction factor L is taken in the
range 4 ≤ L ≤ 10, where L is assumed higher for saturated and loose sands.

The liquefied soil resistances represents a state where the soil is fully liquefied and
where the strength of the soil is reduced considerably.
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3. Calculate dynamic shaft resistance and toe resistance

The dynamic soil resistances τd and qd (stresses) are calculated based on the static
and liquefied soil resistances and the acceleration ratio as

τd = (τs − τl) · e−αr + τl (2.15)

qd = (qs − ql) · e−αr + ql (2.16)

where the acceleration ratio is used a weight function. The above expressions reveal
that the dynamic soil resistances are almost completely weighted towards the liquefied
soil resistances for acceleration ratios above above 5g.

Finally, the amplitude value of the dynamic shaft resistance Rs,max is calculated by
integrating the dynamic shaft resistance τd over the shaft area of the sheet pile, and
the amplitude value of the dynamic toe resistance Rt,max is calculated by multiplying
the dynamic toe resistance qd at the sheet pile toe with the area of the sheet pile.

Rs,max = Ωp

∫ z

0

τd dz (2.17)

Rt,max = qd(z)Ap (2.18)

where Ωp is the perimeter of the sheet pile, Ap is the area of the sheet pile, and z is
the depth of the sheet pile toe.

4. Estimate new acceleration amplitude

A new acceleration is calculated, now taking the shaft resistance into consideration,
as

a =
Meω

2 − δRs,max

mdyn

(2.19)

where δ is a dimensionless damping factor. The steps above are then repeated until
the acceleration amplitude converges.
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2.6 Vibro-driveability models

Some different approaches have previously been used to predict vibro-driveability,
i.e., to estimate if and how a sheet pile can be installed through vibratory driving.
Holeyman [9] describes four different methods of predicting the vibro-driveability:

• Methods based on force equilibrium.

• Methods based on energy conservation.

• Methods based on momentum conservation.

• Methods based on integration of laws of motion.

These approaches are described briefly in the following sections.

2.6.1 Methods based on force equilibrium

These methods investigates if the vibrator delivers a large enough force to overcome
the soil resistance. The general approach is to test if the sum of the driving forces,
i.e., the vibrator force, inertia force of the dynamic mass and static surcharge force,
is larger than the soil resistance. These methods only compare the magnitudes of the
driving forces and resisting forces, and thus do not provide an estimate of the global
penetration speed. [9]

2.6.2 Methods based on energy conservation

These methods rely on the assumption that there should be energy equilibrium between
the vibrator and the resisting soil. The general approach is to formulate an equilibrium
where the power consumed by the soil resistance is set equal to the sum of the power
delivered to and generated by the sheet pile-vibrator system. The penetration speed
can then be estimated from the power equilibrium. [9]

2.6.3 Methods based on momentum conservation

These methods rely on the assumption that the momentum of the sheet pile–vibrator
system for a full cycle is balanced by an impulse of the soil resistance. The general
approach is to formulate a momentum equilibrium where the momentum of the total
mass of the sheet pile–vibrator system accumulated by gravity during a full cycle is
set equal to a soil resistance impulse. The penetration speed can then be estimated
from the momentum equilibrium. [9]
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2.6.4 Methods based on integration of laws of motion

Methods based on integration of laws of motion predict the penetrative movement of
the sheet pile by fulfilling inertial equilibrium at all times, i.e., that there is equilibrium
between external forces and inertial forces [9].

Single degree of freedom models

Viking [2] describes a method where the vibrator and sheet pile can be modelled as
a single degree of freedom (SDOF) system, by assuming that they behave like a rigid
body. Newton’s second law can then be used to estimate the acceleration a of the
vibrating masses mdyn, and thus, the penetrative motion of the sheet pile can be
estimated. The equation of motion for a sheet pile and vibrator modelled as an SDOF
system can according to Viking [2] be formulated as

F0 + Fv + Fm −Rs −Rt −Rc = a ·mdyn (2.20)

where F0 is the static surcharge force, Fv is the vibrator force, Fm is the weight of the
dynamic masses, Rs and Rt are the soil resistances along the shaft and at the toe of
the sheet pile and Rc is the clutch resistance.

The rigid body assumption, which the SDOF model relies on, might not be accurate
for all situations, Massarsch [10] suggested that the diagram shown in Figure 2.14 can
be used to estimate if a pile behaves like a rigid body.
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Figure 2.14: Diagram used to determine if a steel pile behaves like a rigid body or not,
modified after Massarsch [10].

Viking [2] argues that the rigid body assumption is justifiable as the resonance fre-
quencies of the sheet piles generally are higher than the driving frequency. Viking [2]
suggests that the resonance frequency for mode n can be estimated as

fn = n
cb
2L

(2.21)
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where cb is the bar velocity, and Lp is the sheet pile length. Viking [2] illustrates this
with an example where the bar velocity is assumed to cb = 5100 m/s and the sheet
pile length is assumed to Lp = 18 m, where the result is a first resonance frequency of
about 141 Hz which is significantly higher than the usual driving frequencies of around
30–40 Hz.

Longitudinal uniaxial models

According to Holeyman [9], a method to predict the vibro-driveability that has been
used previously is to include the longitudinal behaviour of the sheet pile by using a
longitudinal uniaxial model. An example of such a model is shown in Figure 2.15,
where the vibrator is modelled as two masses separated by a spring, and where one
of the masses is subjected to a sinusoidal force representing the rotating masses. The
sheet pile is modelled as masses and springs, and the soil resistances are modelled
using springs, sliders and dashpots.
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F (t)

Figure 2.15: Illustration of a longitudinal uniaxial model of vibrator, sheet pile and soil,
modified after Holeyman [9].
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3 Numerical procedures

This chapter aims to describe the numerical procedures that were used when simulating
the vibratory driving. Section 3.1 describes the time-stepping method known as the
Central Difference Method. Section 3.2 provides a description of the commercial FE
analysis software Abaqus explicit. A brief introduction to the Finite Element Method
(FEM) is provided in Section 3.3. Finally, a short description of Rayleigh damping is
presented in Appendix A.3.

3.1 Central Difference Method

Dynamic processes can be analysed using explicit numerical time-stepping. Explicit
methods refer to numerical methods were the solution at time i + 1 is determined
exclusively from an equilibrium derived at time i. The Central Difference Method
is an example of an explicit time-stepping method which is rather simple, while also
being efficient in handling non-linear dynamic problems. This section contains a brief
description of the Central Difference Method, which is based on Chopra [11], where
further information about the Central Difference theorem can be found.

In the Central Difference Method, the velocity u̇i and acceleration üi at time i is
expressed as

u̇i =
ui+1 − ui−1

2∆t
(3.1)

and

üi =
ui+1−ui

∆t
− ui−ui−1

∆t

∆t
(3.2)

where ui is the displacement of the section at the time i, and ∆t is the time step
length, which is constant for all time steps. The velocity and acceleration are then
inserted into the equation of motion

mü+ cu̇+ fs = p, (3.3)

and rearranged to solve for the next displacement ui+1. In the dissertation the sheet
pile is modelled linearly while the soil resistance is modelled non-linearly. Thus, the
expression for the next displacement for the sheet pile can be written as[

m

(∆t)2
+

c

2∆t

]
ui+1 = pi −

[
m

(∆t)2
− c

2∆t

]
ui−1 +

2m

(∆t)2
ui − (fs)i (3.4)

where pi is external forces from the vibrator, m is the mass of the sheet pile and
vibrator and c is the damping of the sheet pile. The non-linear internal forces from
the soil resistances and the linear internal forces in the sheet pile are represented by
(fs)i.
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For the iteration of Equation (3.4) to function, the initial displacement u0, and initial
velocity u̇0 is required to be known. Thereafter, the initial acceleration ü0 can be
computed by solving the equation of motion. With these known, the remaining time
increments of the dynamic process can be iterated. The iteration process is visualised
in Figure 3.1, where the velocity u̇i is defined as the difference in displacement over
the previous and preceding time increment, while the acceleration üi is defined as the
difference in mid-interval velocity. The mid-interval velocities are represented by the
filled in circles in Figure 3.1.

u

t

ui+1

ui

ui−1

ti−1 ti ti+1

Figure 3.1: Illustration of the methodology of the Central Difference Method.

The stability requirement of the Central Difference Method is expressed as

∆t

Tn
<

1

π
(3.5)

where Tn is the period time of the highest natural frequency. The stability of the
method refers to the lack of growing numerical round-off errors that occur during
the iterations. Too large time increments will, therefore, result in inaccurate results.
When the size of the time increments goes towards infinitesimal, the numerical result
will go towards a converged solution.

Iteration schemes for the Central Difference Method for non-linear SDOF and MDOF
systems are shown in Tables 3.1 and 3.2.
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Table 3.1: Central Difference Method for SDOF systems, after Chopra [11].

• Initial calculations

– ü0 =
p0 − cu̇0 − (fs)0

m

– u−1 = u0 −∆tu̇0 +
(∆t)2

2
ü0

– k̂ =
m

(∆t)2
+

c

2∆t

• Calculations for time step i

– p̂i = pi −
[

m

(∆t)2
− c

2∆t

]
ui−1 +

2m

(∆t)2
ui − (fs)i

– ui+1 =
p̂i

k̂

– u̇i =
ui+1 − ui−1

2∆t

– üi =
ui+1 − 2ui + ui−1

(∆t)2

Table 3.2: Central Difference Method for MDOF systems, after Chopra [11].

• Initial calculations

– Solve : Mü0 = p0 −Cu̇0 − (fs)0

– u−1 = u0 −∆tu̇0 +
(∆t)2

2
ü0

– k̂ =
M

(∆t)2
+
C

2∆t

– a =
M

(∆t)2
− C

2∆t

– b = − 2M

(∆t)2

• Calculations for time step i

– p̂i = pi − aui−1 − bui − (fs)i

– Solve : k̂ui+1 = p̂i

– u̇i =
ui+1 − ui−1

2∆t

– üi =
ui+1 − 2ui + ui−1

(∆t)2
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3.2 Abaqus Explicit

Abaqus Explicit is a commercial Finite Element analysis software that uses the Central
Difference Method (see Section 3.1) to solve dynamic problems through time stepping.
This section contains a general description of Abaqus Explicit, based on [12].

Firstly, for the explicit analysis to work, every active degree of freedom must have an
inertia. The element masses must, in addition, be lumped in the mass-matrix. Other
than that, the same previous prerequisites for the Central Difference Method are the
same.

In Abaqus, the stability requirement of the Central Difference Method is based on
either the model’s smallest element sizes, or the highest frequency affecting the whole
model. If Abaqus deems the globally highest affecting frequency to give a too large
stability time increment size, the program opts for the conservative method of element-
by-element estimation. Hence, for a general shell-model, the required time increment
size for stability is approximated by the defined transverse shear stiffness of the shell-
elements in the mid-plane. An approximate required time increment size can be ex-
pressed as

∆t ≈ Lmin
cd

(3.6)

where Lmin is the smallest element size in the mesh, and cd is the dilatational wave
speed of the element. In general, Abaqus will, for a three-dimensional model, chose
a stability requirement that is 1 to 1/

√
3 times lesser than this estimate. If the sta-

bility requirement is not met, results of the model will oscillate, and the total energy
balance in the system will change drastically. Another criteria for Abaqus to choose
the conservative stability requirement over the global one, is if one of the following
example capabilities are included in the model: too thick shells, dashpots or material
damping.

In explicit dynamic analyses, in Abaqus, linear bulk viscosity is automatically added.
It generates a bulk viscosity pressure that is linear in the volumetric strain rate, which
is based upon the dilatational mode of each element. The dampening effect that
follows is not intended as a material or structural damping, but rather as a numerical
damping that lessens the contribution from high frequencies.

The explicit analysis can use small time increment sizes without iterations and tangent
stiffness matrices to be formed, while the solution still is proceeding. The explicit
analysis also facilitates models where impact occurs, as impacts happen during short
periods of time. The small time increments of the explicit integration can therefore
capture the resulting behaviour, making it ideal for the dynamic impact simulations
required in the dissertation. The alternative would be implicit integration, where the
stability is unconditional, and its time increments are based upon dynamic equilibrium.
A comparison would conclude that explicit integration is to prefer for analyses that
require large computational cost, that occur during small periods of time, and where
stress wave propagation is of relevance.
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3.3 Finite Element Method

This section contains a brief description of the Finite Element Method. For a more
in-depth explanation of the required procedures, and set-up, of the Finite Element
Method, see for example Ottosen and Petersson [13].

The Finite Element Method is a numerical method of approximating solutions for
differential equations that describe physical problems. The solutions for the differential
equations are acquired by dividing the studied body into smaller parts (finite elements)
and approximating a solution for each element [13]. The method is visualised in Figure
3.2.

Physical
phenomenon

Differential
equation

Model Finite element
equations

Approximation

Model Region Approximation

Heat conduction
in concrete
structure

Diff. equation
for heat
conduction

Finite element
mesh

ElementBoundary

Figure 3.2: Visualisation of the Finite Element Method, modified after Ottosen and
Petersson [13].

The general Finite Element formulation of the equation of motion can be expressed as

Mü+

∫
V

BTσdV = f (3.7)

where σ can define any inner constitutive relation, while f is the external forces
exerted upon the structure. The Finite element formulation of the mass matrix M of
the structure is defined as

M =

∫
V

ρNTN dV (3.8)

where the density ρ is integrated over the volume V of the structure, while N is
the form function matrix. The internal, and external forces may be determined in
numerous ways.

As the Finite element method is an approximate solution, the smaller the element size
used is, the more correct the solution becomes. When the element sizes go towards
infinitesimal, the solution converges towards the exact solution [13].
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4 Reference case

A field study of vibratory driving of steel sheet piles that was conducted by Viking
[2] was used as a reference case. The purpose of using a reference case was to base
the models on realistic soil properties and to facilitate comparison between numerical
results (from the master’s dissertation) and experimental results (from the field study
by Viking [2]), resulting in the possibility to calibrate the models in the master’s
dissertation. This chapter gives a brief description of the reference case, starting with
the prerequisites of the field study and ending with the results of the field study as
well as some comments on the results.

4.1 Field study

The field study, by Viking [2], was performed in V̊arby, outside of Stockholm, and
included vibratory driving of various sheet pile cross-sections, vibratory driving with
and without clutch friction, and with and without attached sensors. Furthermore,
cone penetration tests (CPT) were performed during the field study. CPT is an in-
situ method used to determine, for example, soil strata and soil properties. The
method consist of pressing steel cones, see Figure 4.1, into the ground while measuring
quantities as tip resistances qc and sleeve friction fc, which is the soil resistance (stress)
at the tip of the cone and along the sleeve of the cone, respectively. For more in-
depth information about CPT, see Larsson [14]. The following sections contain a brief
description of the prerequisites for the field test and CPTs, based on Viking [2].

Friction sleeve

Conical tip

Filter

SealSealExtensionRod

Figure 4.1: Geometry and components of a CPT probe, modified after Larsson [14].

.

4.1.1 Soil conditions

The soil at the test site consisted of 1.5–2.0 m of topsoil and clay on top of over 40
m of glacial sand, varying between silty sand and gravelly sand. The soil conditions
and soil properties at the test site were estimated by Viking [2] based on CPT and
soil samples. These showed that the soil mainly consisted of variations of sand, with a
soil friction angle around 30◦ and a shear modulus between 50–90 MPa. Results from
one of the cone penetration tests conducted at the test site are shown in Figure 4.2,
where the variation of the tip resistance qc and sleeve friction fc are shown.
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Figure 4.2: Results from the CPT test conducted at the test site, from Viking [2], where
qc is the tip resistance, and fc is the sleeve friction.

4.1.2 Vibrator

A leader mounted vibrator from ABI (MRZV 800V) was used during the field test.
The properties of the vibrator are shown in Table 4.1.

Table 4.1: Vibrator properties, modified after Viking [2].

.

Parameter Value Unit

Maximum frequency 41 Hz
Eccentric moment 0–12 kgm
Maximum driving force 800 kN
Dynamic mass of vibrator unit 2,450 kg
Maximum pile weight 2,000 kg
Maximum driving force, leader cylinder 70 kN
Maximum driving force, support cylinder 90 kN
Maximum extraction force, leader cylinder 140 kN
Maximum extraction force, support cylinder 175 kN
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Vibrator settings

The driving frequency was, according to Viking [2], set to 41 Hz during the field test.
No information was found (by the authors of the master’s dissertation) regarding the
exact setting of the eccentric moment, but Viking [2] assumed the eccentric moment
to 6 kgm when evaluating the results of the field study.

4.1.3 Sheet piles

Two types of sheet piles were installed during the field study: LX-16 profiles and PU-
16 profiles, however only the PU-16 profiles were equipped with sensors. The section
properties for the PU-16 sheet pile are shown in Table 4.2, and Figure 4.3. The length
of the sheet piles was 14 m.

Table 4.2: Sheet pile PU-16 section properties, after Viking [2].

.

Parameter Value Unit

Mass per meter 74.7 kg/m
Cross-section area, A 95.2 cm2

Perimeter, Ω 2,018 mm
Section modulus, Wx 1,600 cm3

Moment of inertia, Ix 5,560 cm4

303

A57.5◦ 12

9

600

74.2

190
NAx x

Figure 4.3: Illustration of sheet pile PU-16’s cross section with dimensions in millimetres,
modified after Viking [2]. NA indicates the neutral axis in the x-direction.
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4.2 Field study results

In this section, results from the field study by Viking [2] are shown. The results are
from the installation of sheet pile A4, which was of the type PU-16. Sheet pile A4
was chosen as it was installed without clutch friction, and because there was plenty of
measurements available. Some brief comments on the results are also presented.

Figure 4.4 shows the vibro-driveability of the sheet pile presented as penetration depth
versus driving time, and global penetration speed versus penetration depth.

Figure 4.4 suggests that the vertical penetration speed was to be kept at a rather
constant level, at around 120–130 mm/s. To achieve this, the magnitude of the exer-
ted surcharge force would probably need to be varied depending on the penetration
depth. At a deeper penetration depth, the total soil resistance is larger than at shal-
lower penetration depths. Therefore, the surcharge force must restrain the sheet pile
at shallower depths, whilst pushing the sheet pile and providing additional driving
capacity at deeper depths. A dip in the penetration speed can be seen around 0–2
m, in Figure 4.4, where the penetration speed goes down to around 80 mm/s before
reaching a more or less constant level between 4–11 m. A possible explanation for
this, with the assumption that the penetration speed should be kept constant, might
be that it took some time to find the correct loading rate.

Figure 4.4: Vibro-driveability of sheet pile A4, presented as penetration depth versus (a)
driving time and (b) global penetration speed, from Viking [2].
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Figure 4.5 shows the peak lateral acceleration and peak vertical toe acceleration versus
penetration depth. Figure 4.5 shows that the peak vertical acceleration of the sheet
pile is rather constant regardless of the penetration depth, with magnitudes of approx-
imately 15–18g during the study.

Figure 4.5: Peak acceleration amplitude versus penetration depth of sheet pile A4, from
Viking [2].

Figure 4.6 shows the vertical and lateral acceleration of the sheet pile toe versus
time, for penetration depths of two, six and ten metres. Positive acceleration indicate
downwards motion, while negative acceleration indicate upwards motion.

Figure 4.6 shows that at two metre penetration depth, the acceleration varies between
about 11g in the downward direction and 15g in the upward direction. At a six
metre penetration depth, the acceleration varies between about 12g in the downward
direction and 18g in the upward direction. At a ten metre penetration depth, the
acceleration varies between about 12g in the downward direction and 15g in the upward
direction.
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Figure 4.6: Acceleration of sheet pile A4 versus time, corresponding to penetration
depths of (a) 2.0 (b) 6.0 and (c) 10.0 m, modified after Viking [2].

34



Figure 4.7 shows the displacement of the sheet pile versus time, for penetration depths
of two, six and ten metres.

The downward displacement of the sheet pile during each cycle is about 5 mm, regard-
less of the penetration depth, as seen in Figure 4.7. The upward displacement of the
sheet pile during each cycle is about 2.5 mm at six and ten metres penetration depth
while it is slightly larger, about 3 mm, at two metres penetration depth. This could
probably explain why the penetration speed is lower at two metres penetration depth,
than at a six and ten metres penetration depth, as previously seen in Figure 4.4.

Figure 4.7: Displacement of sheet pile A4 versus time, corresponding to penetration
depths of (a) 2.0 (b) 6.0 and (c) 10.0 m, from Viking [2].
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5 Model parameters

In this chapter, the model parameters, that all three models have in common, are
described. The same soil conditions, the same type of sheet pile and the same type of
vibrator was assumed in all models. Section 5.1 provides a description of the assumed
soil profile while dynamic soil resistances are derived from the assumed soil profile in
Section 5.2. Section 5.3 presents the assumed soil model. Finally, Sections 5.4 and 5.5
provide descriptions of the assumed vibrator and sheet pile.

5.1 Soil profile

The soil profile in the models was assumed to be the same as the soil profile in the
reference case, i.e., a couple of metres of topsoil and clay on top of a very thick layer of
glacial sand. However, the ground level in the dissertation (0 m depth) was assumed
to be at the level corresponding to 1 m below the ground in the reference case, as the
first CPT data was from this level. Simplified profiles of the tip resistance qc and skin
friction fc were created based on the CPT results in Figure 4.2, by estimating a linear
stress variation for each metre of penetration depth. The simplified profiles are shown
in Figure 5.1, where also the friction ratio FR is shown, estimated as FR = 100 ·fc/qc.
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Figure 5.1: Simplified tip resistance qc, skin friction fc, and friction ratio FR, plotted
versus soil depth.
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5.2 Dynamic soil resistances

The profiles for the amplitude values of the dynamic shaft resistance τd and dynamic
toe resistance qd (stresses) were estimated with the method described in Section 2.5.3.
The simplified profiles for the tip resistance and skin friction in Figure 5.1 were taken
as the static soil resistances, i.e., qs = qc and τs = fc. Furthermore, the friction ratio
profile in Figure 5.1 was used, and the empirical liquefaction factor L was assumed to
7. The resulting profiles for the dynamic toe and shaft resistances are shown in Figure
5.2, while the calculations are described more in-depth in Appendix A.2.

D
ep

th
[m

]

0 1 2 3

qd [MPa]

0

5

10

15

20

25

0 10 20 30

=d [kPa]

0

5

10

15

20

25

Figure 5.2: Estimated dynamic toe resistance qd, and dynamic shaft resistance τd, plotted
versus penetration depth.

The amplitude values of the dynamic soil resistances Rs,max and Rt,max (forces) are
then determined as

Rs,max = Ωp

∫ z

0

τd dz (5.1)

Rt,max = qd(z)Ap (5.2)

where Ωp is the perimeter of the sheet pile, Ap is the area of the sheet pile, and z is
the depth of the sheet pile toe.
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5.3 Soil model

A soil model describing how the dynamic soil resistances Rt and Rs vary between
the previously determined amplitude values Rt,max and Rs,max during the vibratory
driving is needed to model and simulate vibratory driving.

After testing both the linear and hyperbolic soil models described in Section 2.5.1,
it was decided to only go forward with the linear soil models. There were two main
reasons for this decision: Firstly, the hyperbolic soil models along with the recom-
mended input parameters gave results that were very different from the ones seen in
the reference case. Secondly, it was realised that the hyperbolic soil models would be
rather hard to implement in the FE model.

The parameters in Table 5.1 were assumed for the linear soil models shown in Figure
5.3. The parameters correspond to the values recommended by Moulai-Khatir et al.
[7].

Table 5.1: Parameters for the linear soil models.

Parameter Value Unit

Toe quake, Qs 2.5 mm
Shaft quake, Qt 2.8 mm

Rs [kN]

u [mm]

Rt [kN]

u [mm]Qs

Rs,max

−Rs,max

Rt,max

Qt

Figure 5.3: Linear soil models for the shaft resistance Rs and toe resistance Rt.
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5.4 Vibrator

The vibrator used in the field study by Viking [2] was a MRZV 800V from ABI.
The same model of vibrator was assumed in the master’s dissertation. The driving
frequency was assumed to 41 Hz, corresponding to the field study by Viking [2]. The
bias mass of the vibrator unit was estimated based on the dynamic mass (2,450 kg)
from Table 4.1, and the total mass (3,470 kg) from a data sheet for the MRZV 800V
vibrator. Finally, it was assumed that the leader could exert an upwards directed force
on the vibrator, with a magnitude corresponding to the maximum extraction force of
the leader (140 kN) and a downwards directed force with a magnitude corresponding
to the maximum driving force of the leader (70 kN). This force will from here on be
referred to as leader force. The assumed vibrator parameters are summarised in Table
5.2.

Table 5.2: Summarized vibrator properties.

.

Parameter Value Unit

Driving frequency, fd 41 Hz
Eccentric moment, Me 0–12 kgm
Dynamic weight of vibrator unit, mv 2,450 kg
Bias mass of vibrator unit, m0 1,020 kg
Leader force, Fl −140–70 kN
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5.5 Sheet pile

A simplified cross section, where the interlocks were omitted, was created based on
the PU-16 sheet pile used in the field study by Viking [2]. The simplified cross section
is shown in Figure 5.4, while properties and assumed material parameters are shown
in Table 5.3. The length of the sheet pile was assumed to 14 meters, as in the field
study by Viking [2].

Table 5.3: Sheet pile properties and material parameters.

.

Parameter Value Unit

Length, Lp 14 m
Area, Ap 84.98 cm2

Perimeter, Ωp 170.6 cm
Moment of inertia, Ix 4,890 cm4

Moment of inertia, Iy 27,957 cm4

Plastic section modulus, Wpl,x 369 cm3

Plastic section modulus, Wpl,y 1,363 cm3

Young’s modulus, steel, Es 210 GPa
Yield stress, steel, fy 355 MPa
Density, steel, ρs 7,800 kg/m3
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Figure 5.4: Illustration of the simplified cross section of a PU-16 sheet pile.
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6 Finite Element model

The first model established of vibratory driving of steel sheet piles was a Finite Ele-
ment (FE) model, in the commercial FE analysis software Abaqus. The model was
to simulate the reference case, in Chapter 5, with vibratory driving-, and impact sim-
ulations, to conclude whether a potential stop criterion may potentially be formed,
or not. The procedures followed to establish this FE model are documented in this
chapter.

The input code for the FE model may be seen in Appendix C.

6.1 Model of steel sheet pile

This section handles the modelling of the sheet pile, seen in Figure 6.1. Its properties
and other parameters are described in the following subsections.

Printed using Abaqus/CAE on: Thu Apr 22 13:41:33 Västeuropa, sommartid 2021

Figure 6.1: FE model of the steel sheet pile in Abaqus.

6.1.1 Properties

The sheet pile part was modelled as a three-dimensional, deformable, homogeneous
shell section. The simplified cross-section of the sheet pile, that is described in Chapter
5, was modelled as the top surface, to create a homogeneous cross section. The prop-
erties of the sheet pile, and vibratory parameters, may be seen in Table 6.1.
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Table 6.1: Model parameters of the sheet pile and vibrator unit.

Parameter Value Unit

Sheet pile length, Lp 14 m
Sheet pile cross-section area, Ap 84.98 cm2

Sheet pile perimeter, Ωp 170.6 cm
Young’s modulus, steel, Es 210 GPa
Yield stress, steel, fy 355 MPa
Density, steel, ρs 7,800 kg/m3

Driving frequency, fd 41 Hz
Eccentric moment, Me 0–12 kgm
Dynamic mass of vibrator unit, mv 2,450 kg
Bias mass of vibrator unit, m0 1,020 kg
Leader force, Fl −140–70 kN

6.1.2 Damping

Material damping, in the form of β-damping, was added to the FE model. The internal
viscous damping from the explicit simulation, and the hysteresis damping from the soil
resistance was not considered to reduce the effects of vibratory overtones and natural
frequencies enough. The damping coefficient β was set to 3.03E-05, to give a damping
ratio ζ of 0.01 at 105 Hz. This was done to merely reduce the influence of high
frequencies in the simulations. β-damping is described more thoroughly in Appendix
A.3.

Furthermore, the potential mechanical damping from the elastomere pads in the sup-
pressor housing was neglected. The reason for this was that not enough information
about the potential damping these provide to the whole vibratory system was found.

6.1.3 Loads

To replicate the reference case in Chapter 4, the same exerting forces from the reference
case was applied to the FE model. As the driving capacity Fd is transferred to the
sheet pile through a hydraulic clamp, the driving capacity in the FE model was applied
likewise. An area of 0.2 by 0.2 metres was partitioned in the model, as a common
hydraulic clamp was assumed to be of that size. However, the size of the partitioned
area was deemed irrelevant, if no yield stresses occur in the partitioned area. All
exerting forces were then applied in this area as surface traction stresses. This includes
the weight of the bias mass and the dynamic mass, the leader forces, and the driving
capacity of the vibrator. The dynamic mass was, in addition, added as an inertia, in
the same imagined clamping area, to give the dynamic system a realistic mass. Figure
6.2 shows the partitioned clamp area.
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Printed using Abaqus/CAE on: Fri May 07 16:49:02 Västeuropa, sommartid 2021

Figure 6.2: The head of the sheet pile, with the partitioned area marked in red, and the
added inertia marked in green.

6.1.4 Boundary conditions

Due to the lateral support of the soil acting upon the sheet pile during vibratory
driving, no global buckling phenomena have been documented. In a previous master’s
dissertation regarding vibratory driving of sheet piles, by Lund Tebäck [15], the lat-
eral soil support was modelled with the Winkler model, where the soil is simulated as
lateral springs. Lund Tebäck [15] concluded that the lateral springs had a neglectable
influence on the impact behaviour of the sheet pile. Therefore, for simplicity, displace-
ment boundary conditions in the lateral plane were applied to the sheet pile along the
soil depth, preventing any displacements in the lateral plane. This was not applied
to the sheet pile toe, to accurately be able to capture the local buckling behaviour
there. A similar boundary condition was applied to the top of the sheet pile, where
the partitioned area was created. This was done to simulate the hydraulic clamp’s
rigid connection to the sheet pile, which hinders the sheet pile from moving in the
lateral plane.

An initial velocity was given to the sheet pile at the beginning of all simulations, to
reduce the time it takes for the vibratory driving to reach a steady state behaviour.
The initial velocity was determined based on the driving parameters of previously run
simulations. Further, the velocity at the time of a new vibratory driving period was,
therefore, chosen as the initial velocity.
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6.1.5 Mesh

The element type S4R, with linear interpolation order, and reduced integration was
used. The elements were of quadratic shape, and distributed structurally along the
sheet pile, as seen in Figure 6.3.

The use of reduced integration can cause a reduction in stiffness at the element level.
This has the potential to interfere with the results from the simulations. The reduction
in stiffness becomes larger as the element sizes is decreased. This was considered in
the performed convergence study, seen in Section 6.3, by monitoring the total energy
in the dynamic system. Additionally, the element sizes used in the simulations can
be seen in Section 6.3, where a global element size of 50 mm for the sheet pile was
determined, and an element size of 25 mm for the sheet pile toe was decided upon.
This was done to minimise the required computing time, and to have a fine enough
mesh in the sheet pile toe to properly capture local buckling during an impact.

Printed using Abaqus/CAE on: Fri May 07 16:55:30 Västeuropa, sommartid 2021

Figure 6.3: Mesh of the sheet pile-head, with an element size of 50 mm.

6.2 Model of soil and obstacle

This section handles the method of modelling the soil and the impact obstacle in the
FE model.

6.2.1 Shaft resistance

The soil shear-strength was modelled with the use of Connector elements, as seen
in Figure 6.4. The connectors were placed in intervals of one-metre, and represent
the integrated total friction shear force in between those intervals. Depending on the
penetration depth of the sheet pile, the number of connectors vary. The behaviour
of each connector was determined from the model soil resistance in Chapter 5, that
was based upon the CPT performed in the reference case in Chapter 4. One end of
the connectors was defined at one of four partitioned intersections at each interval, as
shown in Figure 6.4, while the other end was defined in an arbitrary point connected
to the ground.
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The connector’s category was set to basic, with the connector type set to solely transla-
tional cartesian, to follow the global coordinate system. Thereafter, the characteristic
of the shaft resistance, seen in Figure 5.3, were replicated with linear elastic behaviour,
and non-linear plastic behaviour.

Another possible method of defining connector elements, instead of using the manual
Abaqus interface, is to rewrite the input-file. Connector elements could, thereby, have
been assigned to every node, rather than in intervals, and perhaps given a more realistic
shaft friction model. With a fine enough mesh, a low amount of connector elements
might cause yielding in the nodes they are connected to. This potential problem would
be avoided with a larger amount of connector elements.

Soil

depth

14 m Sheet pile

Integrated dynamic
soil resistance

Connector element

1 m

1 m

Penetration

Figure 6.4: Illustration showing the defined connector elements along the sheet pile at a
penetration depth of ten metres.

Beforehand, a similar method of defining the connector elements was tested. Each
interval only had one connector element, instead of four. This element was connected
to an arbitrary ground in one end, and to a reference point in the other end. Further,
this reference point was coupled to the same four partitioned intersections mentioned
earlier. By having a multitude of nodes coupled to a singular reference point, implicit
simulation methods had to be applied to solve the restriction in vertical displacement
that occurred, making the model behave unrealistic, and therefore making it unusable.

6.2.2 Toe resistance

The simulations with the FE model mainly focused on impacts, where the soil toe
resistance is replaced with the resistance of an obstacle instead. Furthermore, the
modelled soil resistances, in Chapter 5, shows that the toe resistance is merely a
fraction of the magnitude of the shaft resistance. Making the effect of the toe resistance
have a potential insignificant influence on the results. This, and the complexity of
adding the toe resistance behaviour, are reasons why it was not implemented into the
FE model.

47



However, as the FE model was calibrated towards the reference case model, where
toe resistance occurred during the vibratory driving, the FE model was lacking that
contribution during non-impact simulations.

6.2.3 Impact obstacle

The obstacle used during explicit impact simulations can be seen in Figure 6.5. A
solid sphere, with a diameter of 0.4 metres was modelled. The Young’s modulus of
the obstacle was set to 50,000 MPa, the same magnitude as good quality granite,
to hinder potential interference during impacts. A more advanced model would take
failure modes of the obstacle, and potential displacement of the obstacle into account
as well, but this is beyond the scope of the dissertation.

Figure 6.5: FE model of the impact obstacle, simulating a boulder.

The mesh of the obstacle was set using elements of the type C3D8R, with linear
geometric order, reduced integration, and hourglass control. The element size was
chosen as 25 mm, as to match the element size of the sheet pile toe.

The interaction between the obstacle and the sheet pile was modelled to have a penalty
tangential behaviour, and hard contact normal behaviour. Penalty interaction implies
that regular Coulomb friction is applied, while hard contact interaction implies that
pressure between the sheet pile and obstacle only occur during contact. This may be
altered into a continuous reduction in pressure after contact ceases, e.g., a linear or
exponential reduction change.

The surface of the modelled boulder was assumed to be rough, and the whole cir-
cumference of the sheet pile toe was assumed to be supported by lateral soil pressure.
Therefore, next to no slip between the sheet pile and the boulder was assumed to
occur. Thus, the friction coefficient for the interaction was set to a sizeable value.
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6.3 Convergence study

A convergence study was performed on the impact simulation at a ten-metre penetra-
tion depth at the middle of the web, to reassure accurate results without consuming
too much computing power. The reference case in Chapter 4 functioned as a template,
and the effects of the impact was assured to be captured properly.

6.3.1 Element size

The effect of the chosen element size of the sheet pile was studied, to find out at what
element size the result had converged and gave sufficient results. Due to computational
limitations of the software, and the hardware, no smaller element sizes than 25 mm
were studied. The number of increments became too large for Abaqus, and the CPU
time required to run the simulations were unreasonable when using any smaller element
size. Additionally, with the added material damping, the required time increment size
for stability was lowered drastically, resulting in even larger amounts of computing
power being required to run the simulations.

A purpose of the master’s dissertation is to achieve a general understanding of the
vibratory driving process, rather than producing highly accurate results. Therefore,
only a minor study was conducted, where a global element size was chosen for the
sheet pile, while a smaller element size was chosen for the sheet pile toe and obstacle.
The element sizes tested, the number of nodes in the simulation, and the stability time
increment size required can be seen in Table 6.2.

Table 6.2: Convergence study of element sizes of the sheet pile during vibratory driving.

Element size of
the sheet pile

Element size of
the sheet pile toe,

and obstacle

Number of nodes Stability time
increment size

[mm] [mm] [s]

100 50 7,231 8.74e-07
100 25 11,123 2.45e-07
50 25 14,623 2.45e-07
25 25 24,073 2.45e-07

The result of the convergence study can be seen in Figure 6.6, where the peak accelera-
tion during vibratory driving versus the number of nodes used to simulate the process
can be seen. It was concluded that the accelerations were still converging with an
increasing number of nodes in the simulation. Due to the computational limitations
mentioned before, a global element size of 50 mm was chosen to be used for the final
simulations. The element size of the sheet pile toe was chosen as 25 mm, to capture
the local buckling behaviour as realistically as possible.
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Figure 6.6: Peak acceleration, one-metre below the sheet pile-head, during vibratory
driving versus the number of nodes used to simulate the process.

6.3.2 Time increment

As described in Section 3.2, Abaqus estimates the stability requirement of the time
increment for the iterations. This is based either on the smallest element size, or the
highest frequency affecting the whole model. This is handled automatically by Abaqus.
The time increment size may be fixed manually if that is desired. However, Abaqus
will not perform an energy oscillation control then, meaning no reassurance that the
total energy in the system does not change drastically. This could, nonetheless, be
checked manually, although it would not be as efficient.

In addition, as described in Section 3.1, all time increments used in the Central Differ-
ence Method, which is used in the explicit Finite Element simulations, are of constant
length. With these two factors holding true, there is no need for a converge study
of the time increment size, as the stability requirements are deemed to give accur-
ate enough results, and a convergence study has been performed of the element sizes.
Furthermore, as mentioned before, immense accuracy is not in the essence of the dis-
sertation, as a more general understanding of the vibratory driving scenarios is sought
after.

The time increment size for stability, that Abaqus uses as the time increment size for
each individual increment varies with the element size. Table 6.2 shows the estimated
stability requirement time increment size during the element size convergence study.
These time increments are minuscule, and only a fraction of the period time that the
sheet pile is vibratory driven downwards at. This concludes that the increment size is
small enough.

6.4 Simulations

The following three simulations were performed with the FE model. The added leader
force, and initial velocity to the vibratory driving simulations, and impact simulations
were determined in Section 7.4.
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6.4.1 Quasi-static buckling

Quasi-static buckling simulations were carried out to study how the contact force
between the sheet pile toe and boulder varies with the vertical displacement of the
sheet pile, which could create an understanding of how forces develop during impact.
Furthermore, the behaviour observed in these simulations were used to model the
impact in the SDOF and MDOF models.

The necessary vertical contact force for local buckling to occur was concluded in quasi-
static explicit simulations. Three local buckling scenarios were studied: local buckling
of the middle of the web, local buckling of the corner between the flange and the web,
and local buckling of the edge of the flange. The obstacle described in Section 6.2.3
was pressed against these three locations of the sheet pile toe, as illustrated in Figure
6.8. During the simulation, the obstacle was driven into the sheet pile at a constant
velocity, and then retracted at the same pace. To save computing power, only the
lowest one-metre of the sheet pile was modelled, as local buckling merely at the toe of
the sheet pile was assumed to occur.

During the quasi-static explicit simulations, mass scaling was used to reduce the dy-
namic effects on the results. The mass of the sheet pile was increased to a magnitude
100,000 times its original mass, to remove the influence of acceleration in the results.

Printed using Abaqus/CAE on: Thu May 06 15:00:33 Västeuropa, sommartid 2021

Figure 6.7: Set-up of the displacement driven buckling simulations of the sheet pile toe.

6.4.2 Vibratory driving

Vibratory driving simulations, with the same conditions as in the reference case in
Chapter 4 were performed, at the penetration depth of two, six and ten metres. The
FE model was calibrated to give resembling results to the reference case, to confirm
its applicability as a vibratory driving model, and to confirm that the FE model gives
realistic results. If regular vibratory driving cannot be realistically simulated, then
the impact results would be irrelevant. The model was deemed to be eligible when
the periodic displacements, global penetration speed, and acceleration of the sheet pile
were comparable to the reference case. The chosen input parameters can be seen in
Table 6.3.
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Table 6.3: Input parameters for the vibratory driving simulations.

Penetration depth Eccentric moment Leader force
[m] Me [kgm] Fl [kN]

10 6 −30
6 6 −5
2 6 14.5

6.4.3 Impact

Impact simulations, with the same conditions as in the reference case in Chapter 4 were
performed, at a penetration depth of ten metres. Three different impact locations were
simulated: at the middle of the web, at the corner between the flange and the web, and
at the edge of the flange, as shown in Figure 6.8. The obstacle was placed at a vertical
distance from the sheet pile determined from the vibratory driving simulations, when
the driving process had reached a steady state behaviour and had reached its maximum
velocity. At each of the three locations, the effect of two different eccentric moment
magnitudes were simulated. These magnitudes were: the reference case eccentric
moment of 6 kgm, and an eccentric moment of 12 kgm. The chosen input parameters
can be seen in Table 6.4.
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y
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Figure 6.8: Illustration of the three impact locations simulated.

Table 6.4: Input parameters for the impact simulations.

Parameter Value Unit

Penetration depth 10 m
Eccentric moment, Me 6 & 12 kgm
Leader force, Fl −30 kN
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6.5 Results

This section presents the results from the simulations described in Section 6.4. This is
followed by an analysis of the results, and the FE model in general in Section 6.6. A
more in-depth discussion, and comparisons of the three models are provided in Chapter
9.

6.5.1 Quasi-static buckling

The results of the quasi-static buckling simulations are shown in Figures 6.11–6.12,
while the buckling behaviour during a dynamic impact simulation is shown in Figure
6.9.

Figure 6.9 shows the buckling behaviour, when the point of contact is the corner
between the flange and the web, for a dynamic impact simulation with an eccentric
moment of 12 kgm. The behaviour is similar to the quasi-static behaviour shown in
Figure 6.10.
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Figure 6.9: Local buckling behaviour of the corner between the web and flange during
dynamic impact simulation with an eccentric moment of 12 kgm (a) Contact
force versus time. (b) Contact force versus vertical displacement.
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Figure 6.10 shows the buckling behaviour when the point of contact is the corner
between the flange and the web. The contact force increases linearly to about 200 kN.
After this the loading stiffness seem to increase until the load is about 300 kN and
then decrease with increasing deformation.
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Figure 6.10: Local buckling behaviour of the corner between the web and flange during
quasi-static buckling simulation, total contact force versus vertical
displacement of the sheet pile.

Figure 6.11 shows the buckling behaviour when the point of contact is the middle
of the web. The contact force increases approximately linearly to 270 kN, at which
point the vertical displacement is 2.8 mm. After this, the contact force again increases
linearly, although with a lower loading stiffness.
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Figure 6.11: Local buckling behaviour of the middle of the web during quasi-static
buckling simulation, total contact force versus vertical displacement of the
sheet pile.

54



Figure 6.12 shows the buckling behaviour when the point of contact is the edge of
the flange. The contact force increases non-linearly to about 60 kN, at which point
the vertical displacement is about 1 mm. After this the contact force varies rather
irregularly with the displacement, but the maximum contact force is about 98 kN.
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Figure 6.12: Local buckling behaviour of the edge of flange during quasi-static buckling
simulation, total contact force versus vertical displacement of the sheet pile.
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6.5.2 Vibratory driving

In the following subsections, the displacement and acceleration of a central node in the
web of the sheet pile one-metre below the pile head, and the acceleration of a central
node in the toe of the sheet pile are plotted versus time, during vibratory driving at
penetration depths of two, six, and ten metres.

Note that negative displacements and negative accelerations indicate downwards mo-
tion in the soil.

Vibratory driving at two metres penetration depth

A upwards leader force of 14.5 kN was added to the vibratory driving process to reduce
the global penetration speed, and an initial upward velocity of 0.45 m/s was added for
the driving to reach a steady state more quickly.

The reference case showed a global penetration speed of around 80 mm/s, with an
upwards displacement of approximately 3mm, and a downwards displacement of ap-
proximately 5 mm, at a penetration depth of two metres. Additionally, the accelera-
tion amplitudes at this penetration depth, in the reference case, showed around 11g
for downwards motion, and around 15g for upwards motion.

Figure 6.13 shows that a global penetration speed of 110 mm/s was reached, an up-
wards displacement of approximately 2.6 mm, and a downwards displacement of ap-
proximately 5.4 mm. Figure 6.14 shows that acceleration amplitudes are approxim-
ately 12g, for both upwards and downwards motion, near the sheet pile-head. Figure
6.15 shows that acceleration amplitudes are approximately 16g, for both upwards and
downwards motion, while being affected by overtone frequencies, at the sheet pile toe.
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Figure 6.13: Displacement at a penetration depth of two metres, versus time, one-metre
below the sheet pile-head.
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Figure 6.14: Acceleration at a penetration depth of two metres, versus time, one-metre
below the sheet pile-head.
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Figure 6.15: Acceleration at a penetration depth of two metres, at the toe of the sheet
pile.
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Vibratory driving at six metres penetration depth

A downwards leader force of 5 kN was added to the vibratory driving process, and an
initial upward velocity of 0.4 m/s was added for the driving to reach a steady state
more quickly.

The reference case showed a global penetration speed of around 120 mm/s, with an
upwards displacement of approximately 2.5 mm, and a downwards displacement of
approximately 5 mm, at a penetration depth of six metres. Additionally, the acceler-
ation amplitudes at this penetration depth, in the reference case, showed around 12g
for downwards motion, and around 18g for upwards motion.

Figure 6.16 shows that a global penetration speed of 145 mm/s was reached, an up-
wards displacement of approximately 2.4 mm, and a downwards displacement of ap-
proximately 6 mm. Figure 6.17 shows that the acceleration amplitudes are approxim-
ately 12g, for both upwards and downwards motion, near the sheet pile-head. Figure
6.18 shows that the acceleration amplitudes are approximately 19g, for both upwards
and downwards motion, while being affected by overtone frequencies, at the sheet pile
toe.

58



0 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Time [s]

-25

-20

-15

-10

-5

0

D
is
p
la

ce
m

en
t
[m

m
]

Figure 6.16: Displacement at a penetration depth of six metres, versus time, one-metre
below the sheet pile-head.
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Figure 6.17: Acceleration at a penetration depth of six metres, versus time, one-metre
below the sheet pile-head.
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Figure 6.18: Acceleration at a penetration depth of six metres, versus time, at the toe of
the sheet pile.
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Vibratory driving at ten metres penetration depth

A downwards leader force of 30 kN was added to the vibratory driving process, and
an initial upward velocity of 0.4 m/s was added for the driving to reach a steady state
more quickly.

The reference case showed a global penetration speed of around 130 mm/s, with an
upwards displacement of approximately 2.5 mm, and a downwards displacement of
approximately 5 mm, at a penetration depth of two metres. Additionally, the acceler-
ation amplitudes at this penetration depth, in the reference case, showed around 12g
for downwards motion, and around 15g for upwards motion.

Figure 6.16 shows that a global penetration speed of 150 mm/s was reached, an
upwards displacement of approximately 2.6 mm, and a downwards displacement of
approximately 6.4 mm. Figure 6.20 shows that the acceleration amplitudes are ap-
proximately 13g, for both upwards and downwards motion, near the sheet pile-head.
Figure 6.21 shows that the acceleration amplitudes are approximately 20g, for both
upwards and downwards motion, while being affected by overtone frequencies, at the
sheet pile toe.
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Figure 6.19: Displacement at a penetration depth of ten metres, versus time, one-metre
below the sheet pile-head.
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Figure 6.20: Acceleration at a penetration depth of ten metres, versus time, one-metre
below the sheet pile-head.
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Figure 6.21: Acceleration at a penetration depth of ten metres, versus time, at the toe of
the sheet pile.
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6.5.3 Impact

In the following subsections, the displacement and acceleration of a central node in the
web of the sheet pile one-metre below the pile head, are plotted versus time, before
and after impacts. Following this, Fast Fourier Transformations of the acceleration
before and after impacts are shown. Thereafter, the local buckling of the sheet pile
toe is visualised, with a scale factor of 1.0. This is documented for vibratory driving
with an eccentric moment of 6 and 12 kgm, for impacts at three locations, and with a
downwards leader force of 30 kN.

Note that negative displacements and negative accelerations indicate downwards mo-
tion in the soil, and that the U2-direction refers to the y-axis in the lateral plane.

Impact at the middle of the web–eccentric moment of 6 kgm

The first impact occurs at 0.085 s, and the obstacle is located at a depth corresponding
to 17 mm, in Figure 6.22.

Figure 6.23 shows that the acceleration amplitudes are approximately 13g before im-
pact, for both upwards and downwards motion. After the impacts, the acceleration
amplitudes are approximately 17g for upwards motion, and 15g for downwards mo-
tion, when disregarding potential data deviations. This is a 30% increase for upwards
acceleration, and a 15% increase for downwards acceleration. Furthermore, the Fast
Fourier Transformations in Figure 6.24 shows an increase in acceleration amplitude
from 13g to 16g, at the driving frequency of 41 Hz, after the first impact. This is a
23% increase.
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Figure 6.22: Displacement at a penetration depth of ten metres, versus time, one-metre
below the sheet pile-head, before and after impacts.
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Figure 6.23: Acceleration at a penetration depth of ten metres, versus time, one-metre
below the sheet pile-head, before and after impacts.
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Figure 6.24: (a) Fast Fourier Transformation of the accelerations in Figure 6.23 before an
impact. (b) Fast Fourier Transformation of the accelerations in Figure 6.23
after impacts.

Figure 6.25: Local buckling of the web of the sheet pile toe, seen in the lateral plane,
after ten impacts. The displacement in the vertical direction, into the paper,
of the middle of the web was approximately 4 mm.
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Impact at the corner between the flange and web–eccentric moment of 6
kgm

The first impact occurs at 0.085 s, and the obstacle is located at a depth corresponding
to 17 mm, in Figure 6.26.

Figure 6.27 shows that the acceleration amplitudes are approximately 13g before im-
pact, for both upwards and downwards motion. After the impacts, the acceleration
amplitudes are approximately 18g for upwards motion, and 16g for downwards mo-
tion, when disregarding potential data deviations. This is a 38% increase for upwards
acceleration, and a 23% increase for downwards acceleration. Furthermore, the Fast
Fourier Transformations in Figure 6.28 shows an increase in acceleration amplitude
from 13g to 18g, at the driving frequency of 41 Hz, after the first impact. This is a
38% increase.
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Figure 6.26: Displacement at a penetration depth of ten metres, versus time, one-metre
below the sheet pile-head, before and after impacts.
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Figure 6.27: Acceleration at a penetration depth of ten metres, versus time, one-metre
below the sheet pile-head, before and after impacts.
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Figure 6.28: (a) Fast Fourier Transformation of the accelerations in Figure 6.27 before an
impact. (b) Fast Fourier Transformation of the accelerations in Figure 6.27
after impacts.

Figure 6.29: Local buckling of the corner between the flange and the web of the sheet
pile toe, seen in the lateral plane, after ten impacts. The displacement in
the vertical direction, into the paper, of the corner between the flange and
the web was approximately 2 mm.
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Impact at the edge of the flange–eccentric moment of 6 kgm

The first impact occurs at 0.085 s, and the obstacle is located at a depth corresponding
to 17 mm, in Figure 6.30.

Figure 6.31 shows that the acceleration amplitudes are approximately 13g before im-
pact, for both upwards and downwards motion. After the impacts, the acceleration
amplitudes are approximately 15g, for both upwards and downwards motion, when
disregarding potential data deviations. This is an increase of 15% in acceleration.
Furthermore, the Fast Fourier Transformations in Figure 6.32 shows an increase in
acceleration amplitude from 13g to 15g, at the driving frequency of 41 Hz, after the
first impact. This is a 15% increase.
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Figure 6.30: Displacement at a penetration depth of ten metres, versus time, one-metre
below the sheet pile-head, before and after impacts.
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Figure 6.31: Acceleration at a penetration depth of ten metres, versus time, one-metre
below the sheet pile-head, before and after impacts.
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Figure 6.32: (a) Fast Fourier Transformation of the accelerations in Figure 6.27 before an
impact. (b) Fast Fourier Transformation of the accelerations in Figure 6.27
after impacts.

Figure 6.33: Local buckling of the flange of the sheet pile toe, seen in the lateral plane,
after ten impacts. The displacement in the vertical direction, into the paper,
of the flange was approximately 20 mm.
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Impact at the middle of the web–eccentric moment of 12 kgm

The first impact occurs at 0.105 s, and the obstacle is located at a depth corresponding
to 60 mm, in Figure 6.34.

Figure 6.35 shows that the acceleration amplitudes are approximately 25g before im-
pact, for both upwards and downwards motion. After impacts the acceleration amp-
litudes are approximately 34g for upwards motion, and 28g for downwards motion,
when disregarding potential data deviations. This is an increase of 36% in upwards
acceleration, and an increase of 12% in downwards acceleration. Furthermore, the
Fast Fourier Transformations in Figure 6.36 shows an increase in acceleration amp-
litude from 21g to 30g, at the driving frequency of 41 Hz, after the first impact. This
is a 42% increase.
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Figure 6.34: Displacement at a penetration depth of ten metres, versus time, one-metre
below the sheet pile-head, before and after impacts.
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Figure 6.35: Acceleration at a penetration depth of ten metres, versus time, one-metre
below the sheet pile-head, before and after impacts.
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(b)

Figure 6.36: (a) Fast Fourier Transformation of the accelerations in Figure 6.35 before an
impact. (b) Fast Fourier Transformation of the accelerations in Figure 6.35
after impacts.

Figure 6.37: Local buckling of the web of the sheet pile toe, seen in the lateral plane,
after ten impacts. The displacement in the vertical direction, into the paper,
of the middle of the web was approximately 22 mm.
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Impact at the corner between the flange and web–eccentric moment of 12
kgm

The first impact occurs at 0.105 s, and the obstacle is located at a depth corresponding
to 60 mm, in Figure 6.38.

Figure 6.39 shows that the acceleration amplitudes are approximately 25g, for both
upwards and downwards motion. After impacts the acceleration amplitudes are ap-
proximately 32g for upwards motion, while being lower for each following impact. For
downwards motion the acceleration amplitudes are approximately 28g, when disreg-
arding potential data deviations. This is an increase of 28% in upwards acceleration,
and an increase of 12% in downwards acceleration. Furthermore, the Fast Fourier
Transformations in Figure 6.40 shows an increase in acceleration amplitude from 21g
to 30g, at the driving frequency of 41 Hz, after the first impact. This is a 42% increase.
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Figure 6.38: Displacement at a penetration depth of ten metres, versus time, one-metre
below the sheet pile-head, before and after impacts.
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Figure 6.39: Acceleration at a penetration depth of ten metres, versus time, one-metre
below the sheet pile-head, before and after impacts.
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Figure 6.40: (a) Fast Fourier Transformation of the accelerations in Figure 6.39 before an
impact. (b) Fast Fourier Transformation of the accelerations in Figure 6.39
after impacts.

Figure 6.41: Local buckling of the corner between the flange and the web of the sheet
pile toe, seen in the lateral plane, after ten impacts. The displacement in
the vertical direction, into the paper, of the corner between the flange and
the web was approximately 8 mm.
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Impact at the edge of the flange–eccentric moment of 12 kgm

The first impact occurs at 0.105 s, and the obstacle is located at a depth corresponding
to 60 mm, in Figure 6.42.

Figure 6.43 shows that the acceleration amplitudes are approximately 25g before im-
pact, for both upwards and downwards motion. After impacts the acceleration amp-
litudes are approximately 25g, for both upwards and downwards motion, when dis-
regarding potential data deviations. Furthermore, the Fast Fourier Transformations
in Figure 6.44 shows an increase in acceleration amplitude from 21g to 27g, at the
driving frequency of 41Hz, after the first impact. This is a 28% increase.
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Figure 6.42: Displacement at a penetration depth of ten metres, versus time, one-metre
below the sheet pile-head, before and after impacts.
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Figure 6.43: Acceleration at a penetration depth of ten metres, versus time, one-metre
below the sheet pile-head, before and after impacts.
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Figure 6.44: (a) Fast Fourier Transformation of the accelerations in Figure 6.43 before an
impact. (b) Fast Fourier Transformation of the accelerations in Figure 6.43
after impacts.

Figure 6.45: Local buckling of the flange of the sheet pile toe, seen in the lateral plane,
after ten impacts. The displacement in the vertical direction, into the paper,
of the flange was approximately 125 mm.
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6.6 Analysis

In this section, the selected Finite Element results are being discussed and analysed.
Firstly, the quasi-static buckling results are examined, followed by the vibratory driv-
ing results and the impact results. Finally, errors, limitations, and potential improve-
ments of the FE model are being discussed.

Quasi-static buckling

The results from the quasi-static simulations seem to be realistic. The corner between
the flange and the web is the stiffest, with the middle of the web, and the edge of the
flange being less stiff, in that order, as would be expected. The buckling behaviours
seem to behave non-linearly, as both elastic and plastic material behaviour occur
during the whole of the buckling processes. Even when the contact force is low, a
small portion of the contact area reaches plasticity, making the whole of the processes
behave plastic. This changes the loading and unloading stiffnesses, as well, making
linearisation of the buckling behaviours complex. The change in stiffness during the
simulations is probably a result of the current deformed shape of the cross-section
being more, or less, stiff. When the contact force versus vertical displacement plots
starts to plateau, extrusion buckling is initiated, which would cause problems during
physical vibratory driving. Figure 6.9, that shows the buckling behaviour of the corner
between the flange and the web during an impact simulation, indicates that extrusion
buckling could be reached rather quickly during regular vibratory driving. The figure
is also similar to Figure 6.10, that shows the quasi-static buckling behaviour of the
corner between the flange and the web, meaning that quasi-static simulations probably
are a reasonable method of predicting impact buckling behaviour.

Vibratory driving

Generally, the vibratory driving results shows good resemblance with the reference case
results. Driving at two, six, and ten metres penetration depths gave global penetration
speeds of 110 mm/s, 145 mm/s, and 150 mm/s, respectively, compared to the 80 mm/s,
120 mm/s, and 130 mm/s of the reference case at those penetration depths. This is a
37.5%, 21%, and 15% difference, respectively, at those three penetration depths. The
difference in global penetration speed ensues mainly from the difference in downwards
displacement. The reason for this difference is thought to be both that the leader force
was calibrated towards the uniaxial MDOF model rather than the FE model, and
that the toe resistance was omitted in the FE model. Inclusion of the toe resistance
is predicted to have given more accurate global penetration speeds, as the general
displacement behaviour of the model is similar to the reference case. Furthermore,
the accelerations from the simulations show good resemblance to the reference case, as
well. Near the sheet pile-head, the acceleration at all three penetration depths, show
the same magnitude as the reference case downward acceleration while the upward
accelerations generally are slightly lower than in the reference case. At the sheet pile
toe, the accelerations from the model seem to be of the same magnitude as in the
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reference case in the upward direction while the downward accelerations are slightly
higher than in the reference case. The pile toe accelerations, additionally, seem to be
influenced by other frequencies than the driving frequency. This is theorised to be the
effect of internal vibrations in the sheet pile. A more realistic damping in the model,
from the surrounding soil, and within the sheet pile, would probably have dampened
out the high amplitudes, and reduced the influence of other frequencies. This could
potentially have been achieved if the soil resistance would have been applied in each
node, rather than in intervals, which might would have hindered the nodes within the
sheet pile from oscillating. The reason for the accelerations near the sheet pile-head
to be more uniform, is thought to be the effect of being close to the applied vibratory
forces, which increases the influence the vibratory driving has on the nodes.

Impacts at the web, and at the corner between the flange and the web

Impacts at the middle of the web, and at the corner between the flange and the web,
with the eccentric moments of both 6 kgm and 12 kgm, show resembling results. The
vertical displacement of the sheet pile stops at around the impact location, and there
is a clear distinction in acceleration amplitude, in the acceleration versus time plots,
before and after impacts, with a general increase of 30% for upwards acceleration.
It is difficult to accurately determine the acceleration change after impacts, as there
is an evident influence from high frequencies. It is reasonable to assume that high
frequencies will follow an impact. How realistic these frequencies are, is another mat-
ter. Presumably, these frequencies would have been dampened out if a more realistic
damping would have been applied to the model. With this in mind, the Fast Fourier
Transformations seem to give a more distinct indication that an impact has occurred,
as they generally gave a higher increase in acceleration amplitude, at the driving fre-
quency, than the acceleration versus time plots. Potentially, the indication that high
frequencies start to appear could be a sign of impact, as well. This is, however, difficult
to theorise around, as no experimental field study have been found where an impact
occurred, which could have either confirmed or denied this theory. The buckling dis-
placement at these impact locations are minor with the lower eccentric moment, both
vertically and laterally, and are assumed to be neglectable in a practical scenario.
With the higher eccentric moment, however, the buckling displacements at the middle
of the web starts to extrude, which might make the sheet pile insufficient if continued
vibratory driving had occurred. The corner between the flange and the web seems to
be too stiff for any sufficient buckling to happen.

Impacts at the edge of the flange

Impacts at the edge of the flange results in a different behaviour. With an eccentric
moments of 6 and 12 kgm, it is problematic to determine when an impact has occurred.
With the lower eccentric moment, the vibratory driving of the sheet pile continues after
the first impact with a new lesser global penetration speed. With the higher eccentric
moment, the vibratory driving of the sheet pile seems to continue after the first impact
with the same global penetration speed, as if no impact had occurred. The acceleration
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versus time plots tells the same story, it is challenging to determine if any impacts have
happened at all, as the acceleration amplitudes are approximately the same before
and after the impacts. A small number of overtones are present after the first impact,
which might be an indication. However, during physical vibratory driving, in realistic
soil conditions, overtones are assumed to be more common, with varying intervals
of grain sizes and soil layer densities. Therefore, the Fast Fourier Transformations
seem to give the best indication that an impact has occurred, where an acceleration
amplitude increase of 15% and 28% ensued after the first impact, for the lower and
higher eccentric moments, respectively. Those plots indicate, as well, that the influence
from other frequencies is minor. The buckling displacements at the edge of the flange
is troublesome, for both the lower and higher eccentric moment. Extrusion buckling
seem to be initiated for both scenarios. Given enough time, the sheet pile would have
been made insufficient by making it impossible to connect another sheet pile to the
existing one, while also removing the ground water resistance of the sheet pile wall.
The combination of it being difficult to notice these impacts, and the catastrophic
effect of them, makes it two ominous scenarios.

General

As mentioned above, the damping in the FE model is probably not realistic. If the soil
model, in Section 5.3, would have been made more realistic, and the implementation of
it in the FE model had been made more continuous along the sheet pile, better results
would probably have been given. The stiffness-proportional damping added, of 1% at
the natural frequency of approximately 105Hz, could possibly have been increased to
reduce the influence of the non-physical frequencies. Experimental field studies must
probably be performed to more accurately capture the damping of the system, because
currently the applied damping is just based upon assumptions.

The conducted convergence study could have been performed more thoroughly, as
the accelerations were still converging at the chosen element size of the sheet pile.
More accurate simulation results would probably have been given with a finer mesh.
However, due to time, and computational limitations, a finer mesh of the model would
have been unreasonable. The chosen element size did also seem to provide results good
enough to prove the usefulness of the model, and to confirm its legitimacy.

As always, human- and computational reliability does not always align, resulting in
errors. This could potentially have influenced the established FE model, and its sim-
ulated results. Hopefully, it has not had too large of an effect.

A major limitation with the created FE model was that the lateral soil support was
modelled with displacement boundary conditions, rather than with a lateral soil beha-
viour. The consequence of this is that compression waves could be captured with the
model, but not bending waves. Potentially, abrupt changes in bending waves could
have been a more advantageous indication that an impact had occurred, than abrupt
changes in compression waves.
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7 Uniaxial MDOF model

A uniaxial Multi-Degree of Freedom (MDOF) model was created to study if the vibrat-
ory driving and impact with a boulder could be modelled using a simpler, and faster,
model than the FE model. The method used when creating the model is described in
Section 7.1, while the simulation method is described in Section 7.2. A convergence
study is presented in Section 7.3. A model calibration where the model was tuned
against the reference case is presented in Section 7.4. The simulations that were car-
ried out using the MDOF model are described in Section 7.5 while the results of the
simulations are shown in Section 7.6. Finally, a discussion of the results is presented
in Section 7.7.

7.1 Model

The uniaxial MDOF model was created using springs, masses and sliders, as shown
in Figure 7.1. Some simplifications were made compared to the uniaxial model that
was described in Section 2.6.4. Firstly, the isolation spring between the bias mass and
vibrating mass was omitted, and the bias mass was instead assumed to be represented
by a static force, meaning that the isolation was assumed to be perfect. Secondly,
the soil resistances were represented using only springs and sliders, i.e., the dashpots
were omitted. The reason for this was to use a simpler model that could easily be
implemented in the FE model.

The model parameters from Chapter 5 were used when creating the model, relevant
parameters are summarised in Table 7.1 for simplicity.

Table 7.1: Model parameters of the sheet pile and vibrator unit.

Parameter Value Unit

Sheet pile length, Lp 14 m
Sheet pile cross-section area, Ap 84.98 cm2

Sheet pile perimeter, Ωp 170.6 cm
Young’s modulus, steel, Es 210 GPa
Density, steel, ρs 7,800 kg/m3

Driving frequency, fd 41 Hz
Eccentric moment, Me 0–12 kgm
Dynamic mass of vibrator unit, mv 2,450 kg
Bias mass of vibrator unit, m0 1,020 kg
Leader force, Fl −140–70 kN
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Figure 7.1: Illustration of the uniaxial MDOF model of the sheet pile–vibrator system.

78



7.1.1 Sheet pile

The sheet pile was modelled using linear spring elements, each with a length Le of one
metre. The element stiffness matrix was calculated as

Ke =
Es · Ap
Le

[
1 −1
−1 1

]
(7.1)

and the element mass matrix as

Me = ρs · Ap · LE
[
0.5 0
0 0.5

]
(7.2)

with the sheet pile area Ap, Young’s modulus Es and density ρs from Table 7.1.
These matrices were then assembled to global mass and stiffness matrices, M and K,
representing the model shown in Figure 7.1.

7.1.2 Damping

Material damping for the sheet pile was included in the model by using stiffness pro-
portional Rayleigh damping. The first non-rigid natural frequency was estimated to
about 105 Hz by doing an eigenvalue analysis with the assumption that the sheet
pile–vibrator system is vibrating freely. The damping was then included in the model
using the damping matrix C determined as

C = β ·K (7.3)

where K is the global stiffness matrix and β is the stiffness proportional damping
constant determined as

β =
2ζ

ωn
(7.4)

with the damping ratio ζ assumed to 1% and the natural frequency ωn in rad/s. The
main reason for including some damping was to avoid overtones that distorts the
acceleration data (although it did not have a large influence on the displacements,
velocities, and penetration speed).

7.1.3 Vibrator

The action from the vibrator was modelled using the method described in Section
2.4.1, thus the unbalanced vertical force was modelled as

Fv(t) = Me · ω2 · sin(ωt) (7.5)

and the static surcharge force as

F0 = m0 · g + Fl (7.6)

where Me is the eccentric moment, ω is the driving frequency in rad/s, t is the time,
m0 is the bias mass, and Fl is the leader force. The eccentric moment Me and leader
force Fl were varied in the different analyses. The dynamic mass of the vibrator was
included by adding it to the top node in the system (m1 in Figure 7.1).
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7.1.4 Shaft resistance

Shaft resistance was included in the model by adding springs and sliders to each node
below the ground level and where the linear soil model for shaft resistance, described
in Section 5.3, was used to describe the spring–slider behaviour. A maximum shaft
resistance force Rs,max was calculated for each slider, based on the dynamic shaft
resistance profile τd from Section 5.2, as

Rs,max = Ωp

∫ z+Le/2

z−Le/2
τd dz (7.7)

where z is the depth of the node, Ωp is the sheet pile perimeter and Le is the sheet pile
element length. The limits for each slider were set to −Rs,max ≤ Rs ≤ Rs,max. The
stiffness for each spring was calculated as

ks =
Rs,max

Qs

(7.8)

with the shaft quake Qs = 2.5 mm.

7.1.5 Toe resistance

Toe resistance was included in the model by adding a spring and a slider to the node
corresponding to the toe of the sheet pile and where the linear soil model for toe
resistance, described in Section 5.3, was used to describe the spring–slider behaviour.
A maximum toe resistance force Rt,max was calculated for the slider, based on the
dynamic toe resistance profile qd from Section 5.2, as

Rt,max = Ap · qd(z) (7.9)

where z is the depth of the sheet pile toe and Ap is the sheet pile area. The limits for
the slider were set to 0 ≤ Rt ≤ Rt,max. The stiffness for the spring was calculated as

kt =
Rt,max

Qt

(7.10)

with the toe quake Qt = 2.8 mm.

7.1.6 Impact with boulder

Impact with a boulder was modelled by changing the behaviour of the toe resistance
spring so that it corresponded to the impact behaviours observed in the FE model,
where quasi-static simulations of the sheet pile buckling behaviour were performed.
The method used to determine the behaviour is described in detail in Section 6.4.1.

The purpose of modelling the impact was to study if the MDOF model would produce
results that correspond well to the FE model. With regard to this, it was decided that
it was sufficient to study only one of the impacts, and the impact at the center of the
web was chosen.
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The impact behaviour from the FE model was simplified so that it was easier to
implement in the MDOF model. Firstly, a linear loading stiffness and a maximum
load were estimated based on the contact force versus displacement curve in Section
6.4.1. Secondly, the unloading stiffness was assumed to be the same as the loading
stiffness.

Table 7.2 shows the parameters that were used to model the impact behaviour while
the contact force versus displacement curve is shown in Figure 7.2, where the linear
approximation is also shown. The impact location is shown in Figure 7.3.

Table 7.2: Parameters describing the impact behaviour.

.

Parameter Value Unit

Loading stiffness 100 MN/m
Unloading stiffness 100 MN/m
Maximum load 300 kN
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Figure 7.2: (a) Contact force versus displacement for web impact. (b) Linear
approximation of contact force versus displacement.
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Figure 7.3: Illustration of the impact location simulated.
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7.2 Simulation method

The simulations were carried out using the Central Difference Method, where the
iteration scheme for MDOF systems, as shown in Section 3.1, were implemented.
All initial conditions that were needed to start the iteration scheme was set to zero,
however, this should have had no effect on the results as the iterations were continued
until it was certain that a steady state had been reached. The time step size was set
to five microseconds, which is motivated with the convergence study in Section 7.3.

The MATLAB code that was written to set up the model, and run the simulations is
included in Appendix B.1.

7.3 Convergence study

A convergence study was carried out to ensure that a small enough time-step was
used in the simulations. The convergence study was done by comparing the peak toe
accelerations during steady state for different time steps (for normal driving without
impact). The input parameters in Table 7.3 was used in the convergence study. The
peak toe acceleration as a function of the time step size is shown in Figure 7.4, from
which it was concluded that a time step size of five microseconds was sufficient.

Table 7.3: Parameters used in the convergence study.

.

Parameter Value Unit

Penetration depth 10 m
Eccentric moment, Me 6 kgm
Leader force, Fl 0 kN
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Figure 7.4: Convergence study for the time step size. Peak toe acceleration as a function
of the time step size.
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7.4 Model calibration

A model calibration was carried out to try to fit the model to the experimental results
from the reference case. The two quantities that were unknown from the reference
case were the setting of the eccentric moment and the additional driving force from
the leader. As stated previously, Viking [2] assumed the eccentric moment to 6 kgm
when evaluating the results in the reference case and it was therefore concluded that the
eccentric moment should be set to 6 kgm in the model. The calibration then consisted
of calibrating the leader force so that the model produced results that correspond to
the reference case. Here it was decided that it was most beneficial to calibrate the
leader force such that the model produced penetration speeds that corresponded well
to the reference case.

By assuming that the leader force varies with the penetration depth according to
Figure 7.5b, the model produces penetration speeds that varies with the penetration
depth according to Figure 7.5a, which is fairly close to the penetration speeds from
the reference case. It can be seen in Figure 7.5b that the leader force increases fairly
linearly with the penetration depth. This was assumed to be reasonable as the total
shaft resistance more or less increases linearly with the penetration depth and thus
the leader force would need to have a similar variation if the target is a constant
penetration speed.
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Figure 7.5: (a) Penetration speed as a function of the penetration depth. (b) Leader force
as a function of the penetration depth.
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7.5 Simulations

The simulations that were carried out with the MDOF model are described in this
section, while selected results from the simulations are shown in Section 7.6.

7.5.1 Vibratory driving simulations

Vibratory driving at the penetration depths of two, six, and ten metres were simulated
to study if the model produces result that correspond well with the reference case. The
simulations were run until it was certain that a steady state had been reached

The parameters used in the three simulations are shown in Table 7.4.

Table 7.4: Input parameters for vibratory driving simulations.

.

Penetration depth Eccentric moment Leader force
[m] Me [kgm] Fl [kN]

10 6 30
6 6 5
2 6 −14.5

7.5.2 Impact simulations

The impact described in Section 7.1.6 was simulated. The penetration depth was
assumed to be ten metres, and two different eccentric moments, 6 and 12 kgm, were
studied for the impact. The impact simulations were, as previously mentioned, carried
out by changing the behaviour of the toe resistance spring so that it corresponded to
the contact force versus displacement curve from the FE model. The simulations were
carried out by running an ordinary vibratory driving simulation until a steady state
had been reached and then changing the behaviour of the toe resistance spring.

The parameters used in the simulations are shown in Table 7.5.

Table 7.5: Input parameters for impact simulations.

.

Parameter Value Unit

Penetration depth 10 m
Eccentric moment, Me 6 & 12 kgm
Leader force, Fl 30 kN
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7.5.3 Parameter study

A parameter study of how the driving frequency effects the vibratory driving was
conducted. Driving frequencies in the chosen vibrators range (0–41 Hz) was studied
as well as hypothetical frequencies outside of the vibrators range. The parameter study
was carried out by running an ordinary vibratory driving simulation (without impact)
for each chosen driving frequency. The simulations were run until it was certain that
a steady state had been reached.

The parameters used in the parameter study are shown in Table 7.6.

Table 7.6: Input parameters for parameter study.

.

Parameter Value Unit

Driving frequency, fd 15–120 Hz
Penetration depth 10 m
Eccentric moment, Me 6 kgm
Leader force, Fl 30 kN
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7.6 Results

Selected results from the simulations are presented in this section. Some brief com-
ments on the results are also provided while a more in-depth discussion of the results is
provided in Section 7.7. Note that the positive direction is downwards, e.g., a positive
displacement corresponds to a downward displacement.

7.6.1 Vibratory driving simulations

Selected results from the vibratory driving simulations at two, six and ten metres
penetration depth are presented in this section. The results were taken at a time
when a steady state had been reached.

Vibratory driving at two metres depth

Figures 7.6–7.8 show displacement and accelerations for a penetration depth of two
metres.

Figure 7.6 shows the displacement one metre below the sheet pile-head. The upward
displacement amplitude is approximately 3 mm while the downward displacement
amplitude is approximately 5 mm. The penetration speed is about 79 mm/s. The
results from the reference case at two metres depth show an upward displacement
amplitude of about 3 mm, a downward displacement amplitude of about 5 mm and a
penetration speed of about 80 mm/s.

Figures 7.7 and 7.8 show the acceleration one metre below the sheet pile-head and at
the sheet pile toe, respectively. The acceleration one metre below the sheet pile-head
varies between 13.5g in the upward direction and 14g in the downward direction. The
acceleration at the sheet pile toe varies between 18g in the upward direction and 14.5g
in the downward direction. The results from the reference case at two metres depth
show accelerations at the sheet pile toe varying between 15g in the upward direction
and 11g in the downward direction.
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Figure 7.6: Displacement of sheet pile, 1 m below the sheet pile-head, versus time for 2 m
penetration depth.
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Figure 7.7: Acceleration of sheet pile, 1 m below the sheet pile-head, versus time for 2 m
penetration depth.
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Figure 7.8: Acceleration of sheet pile toe versus time for 2 m penetration depth.
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Vibratory driving at six metres depth

Figures 7.9–7.11 show displacement and accelerations for a penetration depth of six
metres.

Figure 7.9 shows the displacement one metre below the sheet pile-head. The upward
displacement amplitude is approximately 2.6 mm while the downward displacement
amplitude is approximately 5.7 mm. The penetration speed is about 124 mm/s. The
results from the reference case at six metres depth show a upward displacement amp-
litude of about 2.5 mm, a downward displacement amplitude of about 5 mm and a
penetration speed of about 120 mm/s.

Figures 7.10 and 7.11 show the acceleration one metre below the sheet pile-head and at
the sheet pile toe, respectively. The acceleration one metre below the sheet pile-head
varies between 13g in the upward direction and 14g in the downward direction. The
acceleration at the sheet pile toe varies between 19g in the upward direction and 16g
in the downward direction. The results from the reference case at six metres depth
show accelerations at the sheet pile toe varying between 18g in the upward direction
and 12g in the downward direction.
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Figure 7.9: Displacement of sheet pile, 1 m below the sheet pile-head, versus time for 6 m
penetration depth.
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Figure 7.10: Acceleration of sheet pile, 1 m below the sheet pile-head, versus time for 6
m penetration depth.
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Figure 7.11: Acceleration of sheet pile toe versus time for 6 m penetration depth.
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Vibratory driving at ten metres depth

Figures 7.12–7.14 show displacement and accelerations for a penetration depth of ten
metres.

Figure 7.12 shows the displacement one metre below the sheet pile-head. The upward
displacement amplitude is approximately 2.9 mm while the downward displacement
amplitude is approximately 6.1 mm. The penetration speed is about 129 mm/s. The
results from the reference case at ten metres penetration depth show a upward dis-
placement amplitude of about 2.5 mm, a downward displacement amplitude of about
5 mm and a penetration speed of about 130 mm/s.

Figures 7.13 and 7.14 show the acceleration one metre below the sheet pile-head and at
the sheet pile toe, respectively. The acceleration one metre below the sheet pile-head
varies between 14.5g in the upward direction and 15.5g in the downward direction.
The acceleration at the sheet pile toe varies between 21.5g in the upward direction
and 18.5g in the downward direction. The results from the reference case at six metres
penetration depth show accelerations at the sheet pile toe varying between 15g in the
upward direction and 12g in the downward direction.
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Figure 7.12: Displacement of sheet pile, 1 m below the sheet pile-head, versus time for 10
m penetration depth.
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Figure 7.13: Acceleration of sheet pile, 1 m below the sheet pile-head, versus time for 10
m penetration depth.
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Figure 7.14: Acceleration of sheet pile toe versus time for 10 m penetration depth.
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7.6.2 Impact simulations

Selected results from the impact simulations with eccentric moments of 6 and 12 kgm
are presented in this section.

Impact–eccentric moment of 6 kgm

Figures 7.15 and 7.16 show displacement and acceleration, one metre below the sheet
pile-head, before and after impact with an eccentric moment of 6 kgm. Figure 7.17
shows Fast Fourier Transformations (FFTs) of the acceleration before and after impact.
The first contact occurs at about t = 0.107 s.

Figure 7.15 shows that the penetration speed is approximately 129 mm/s before the
impact and 0 mm/s after the impact. Figure 7.16 shows that the acceleration varies
between 14.5g in the upward direction and 15.5g in the downward direction before
the impact, which corresponds to a peak-to-peak amplitude of 30g. The acceleration
varies between 21g in the upward direction and 18g in the downward direction after
the impact, which corresponds to a peak-to-peak amplitude of 39g. Thus, the im-
pact results in a 45% increase in upward acceleration, a 16% increase in downward
acceleration and a 30% increase in peak-to-peak amplitude.

Figure 7.17 shows an acceleration amplitude of 14.5g at 41 Hz before the impact and
an acceleration amplitude of 18.5g at 41 Hz after the impact. Thus, the impact results
in a 28% increase in acceleration amplitude at 41 Hz. Some influence of frequencies
between 0–41 Hz can be seen both before and after the impact. There is also a slight
influence from higher frequencies after the impact, where an acceleration amplitude of
1.4g at 80 Hz is the most apparent.
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Figure 7.15: Displacement of sheet pile, 1 m below the sheet pile-head, versus time for
for an eccentric moment of 6 kgm.
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Figure 7.16: Acceleration of sheet pile, 1 m below the sheet pile-head, versus time for an
eccentric moment of 6 kgm.
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Figure 7.17: FFT of sheet pile acceleration. (a) Before impact. (b) After impact.
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Impact–eccentric moment of 12 kgm

Figures 7.18 and 7.19 show displacement and acceleration, one metre below the sheet
pile-head, before and after impact for an eccentric moment of 12 kgm. Figure 7.20
shows FFTs of the acceleration before and after impact. The first contact occurs at
about t = 0.108 s.

Figure 7.18 shows that the penetration speed before the impact is approximately 470
mm/s and 0 mm/s after the impact. Figure 7.19 shows that the acceleration varies
between 25.5g in the upward direction and 27g in the downward direction before the
impact, which corresponds to a peak-to-peak amplitude of 52.5g. The acceleration
varies between 38g in the upward direction and 30g in the downward direction after
the impact, which corresponds to a peak-to-peak amplitude of 68g. Thus, the im-
pact results in a 49% increase in upward acceleration, a 11% increase in downward
acceleration and a 30% increase in peak-to-peak amplitude.

Figure 7.20 shows an acceleration amplitude of 26g at 41 Hz before the impact and an
acceleration amplitude of 31.5g at 41 Hz after the impact. Thus, the impact results
in a 21% increase in acceleration amplitude at 41 Hz. Some influence of frequencies
between 0–41 Hz can be seen both before and after the impact. There is also a slight
influence from higher frequencies after the impact, where an acceleration amplitude of
2.7g at 80 Hz is the most apparent.
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Figure 7.18: Displacement of sheet pile, 1 m below the sheet pile-head, versus time for
for an eccentric moment of 12 kgm.
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Figure 7.19: Acceleration of sheet pile, 1 m below the sheet pile-head, versus time for an
eccentric moment of 12 kgm.
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Figure 7.20: FFT of sheet pile acceleration. (a) Before impact. (b) After impact.
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7.6.3 Parameter study

Selected results from the parameter study, where the driving frequency was varied
between 15–120 Hz, are shown in this section. The results were taken at a time when
a steady state had been reached.

Figure 7.21 shows the penetration speed, one metre below the sheet pile-head, as
a function of the driving frequency. Figure 7.21a shows that a (hypothetical) peak
penetration speed of about 11,000 mm/s occur at a driving frequency of 105 Hz. Figure
7.21b shows that the penetration speed varies between 105–155 mm/s for driving
frequencies between 15–41 Hz, with a peak of 155 mm/s at a driving frequency of 37
Hz.

Figure 7.22 shows the peak acceleration, one metre below the sheet pile-head, as a
function of the driving frequency. Figure 7.22a shows that a peak acceleration of 364g
occurs at a driving frequency of 105 Hz. Figure 7.22b shows that the peak acceleration
varies rather linearly from 5–15.5g, for driving frequencies between 15–41 Hz.
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Figure 7.21: Penetration speed versus driving frequency. (a) 15–120 Hz. (b) 15–41 Hz.
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Figure 7.22: Peak acceleration versus driving frequency. (a) 15–120 Hz. (b) 15–41 Hz.
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7.7 Analysis

A discussion of the results in Section 7.6 are presented in this section, and comments
on the model calibration in Section 7.4 are also provided.

Model calibration

The model calibration was carried out mainly because there was no information re-
garding the setting of the leader force in the reference case. As a result of this, the
variation of the leader force with the penetration depth was estimated so that the pen-
etration speeds in the model corresponded to the ones observed in the reference case.
The result of the calibration is a leader force that increases approximately linearly with
the penetration depth. This does not appear to be unreasonable considering that the
shaft resistance increases more or less linearly with the penetration depth. However,
due to the lack of information regarding the setting of the leader force in the reference
case, there is no obvious method to verify if the estimated leader force variation is
actually accurate.

Vibratory driving simulations

The model produced penetration speeds that are approximately identical to the ref-
erence case, which was expected since that was the target of the model calibration.
The small deviations in the penetration speeds can be attributed to that the model
calibration was carried out in an approximate manner, without any fine-tuning.

The displacement amplitudes produced by the model correspond rather well to the
reference case. The general shape of the displacement curves corresponds well to the
reference case. However, some deviations can be seen. The model produced upward
and downward displacement amplitudes that are slightly higher than in the reference
case. The maximum deviation in displacement amplitude is at ten metres penetration
depth, where the model produced a downward displacement amplitude (6.1 mm) that
is about 22% higher than the corresponding downward displacement amplitude in the
reference case (5 mm). A part of the deviations can probably be attributed to human
errors when estimating the displacement amplitudes from the plots in the reference
case.

The accelerations produced by the model correspond fairly well to the reference case,
although there are some deviations. The toe accelerations produced by the model are
higher in both the upward and downward direction. The shapes of the toe acceleration
curves are also different than in the reference case, where more overtones seems to be
present in the toe accelerations produced by the model. The maximum deviation
in toe acceleration amplitude is at ten metres penetration depth, where the model
produced a downward acceleration amplitude (18.5g) that is about 54% higher than
the corresponding downward acceleration amplitude in the reference case (12g).
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There were unfortunately no data for the head accelerations in the reference case, but
for the sake of comparison it is assumed that the head accelerations in the reference
case would have been approximately the same as the toe accelerations. The head
accelerations produced by the model are generally lower than in the reference case in
the upward direction and higher than in the reference case in the downward direction.
The shape of the head acceleration curves corresponds rather well to the curves in
the reference case. The maximum deviation in head acceleration amplitude is at six
metres penetration depth, where the model produced a upward acceleration amplitude
(13g) that is about 28% lower than the corresponding upward acceleration amplitude
in the reference case (18g).

The deviations in the accelerations in general, and the toe accelerations in particular,
might indicate that there is not enough damping in the model, causing the sheet
pile (springs) to oscillate in higher frequencies than the driving frequency. The fact
that the shaft resistance is added at discrete points in the model rather than as a
continuous friction might also contribute to these oscillations. A part of the deviations
in the accelerations can probably also be attributed to errors when estimating the
acceleration amplitudes from the plots in the reference case.

Impact simulations

The impact simulations show that the penetration speed goes to zero almost instantly
when the impact occurs, which indicates that the relatively simple impact model works
fairly well. The acceleration amplitude in both upward and downward direction in-
creases after impact, where there generally is a higher increase in upward acceleration
than in downward acceleration and were the increase in peak-to-peak acceleration were
30% for both studied eccentric moments. Some noise in the accelerations can also be
seen after the impacts. The FFTs of the accelerations indicates that the impacts result
in a 20–30% increase in acceleration amplitude at the driving frequency of 41 Hz. The
FFTs also show that there are some minor influences from higher frequencies after the
impact.

Parameter study

The parameter study indicates that the driving frequency only has a slight influence
on the penetration speed and acceleration in the frequency range of 15–41 Hz, which is
a fairly representative frequency range for today’s vibratory units. For the penetration
speed there seems to be an optimum frequency at about 37 Hz for the considered case,
but more studies with different penetration depths, eccentric moments etc. would
need to be conducted to confirm this. The parameter study also indicates that there is
resonance at the hypothetical driving frequency of 105 Hz. This was not unexpected
considering that the first non-rigid natural frequency had previously been estimated
to 105 Hz through an eigenvalue analysis.
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8 SDOF model

A Single-Degree of Freedom (SDOF) model was created with the purpose of studying if
a simpler and faster model than the MDOF model could be used to simulate vibratory
driving and an event where a sheet pile encounters a boulder during vibratory driving.
The method used when creating the model is described in Section 8.1, while the
simulation method is described in Section 8.2. A convergence study is presented in
Section 8.3. The simulations that were carried out using the SDOF model are described
in Section 8.4 while the results of the simulations are shown in Section 8.5. Finally, a
discussion of the results is presented in Section 8.6.

8.1 Model

The SDOF model relies on the assumption that the sheet pile–vibrator system behaves
like a rigid body. This means that the head and the toe of the sheet pile is assumed
to always have the same acceleration. The SDOF model is essentially identical to the
uniaxal MDOF model, apart from that the longitudinal behaviour of the sheet pile is
neglected. The model is visualised in Figure 8.1.

The model parameters from Chapter 5 were used when creating the model, relevant
parameters are summarised in Table 8.1 for simplicity.

Table 8.1: Model parameters of the sheet pile and vibrator unit.

Parameter Value Unit

Sheet pile length, Lp 14 m
Sheet pile cross-section area, Ap 84.98 cm2

Sheet pile perimeter, Ωp 170.6 cm
Young’s modulus, steel, Es 210 GPa
Density, steel, ρs 7,800 kg/m3

Driving frequency, fd 41 Hz
Eccentric moment, Me 0–12 kgm
Dynamic mass of vibrator unit, mv 2,450 kg
Bias mass of vibrator unit, m0 1,020 kg
Leader force, Fl −140–70 kN
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Figure 8.1: Illustration of the SDOF model of the sheet pile–vibrator system.

8.1.1 Dynamic mass

As the longitudinal behaviour of the sheet pile is neglected and the system is modelled
with a single degree of freedom, the sheet pile–vibrator system is modelled as a single
dynamic mass subjected to external forces. The dynamic mass mdyn is the sum of the
dynamic vibrator mass mv and the sheet pile mass mp

mdyn = mv +mp (8.1)

where mv is the dynamic vibrator mass and where the sheet pile mass was calculated
based on the sheet pile length Lp, density ρs and sheet pile area Ap as mp = LpApρs.

8.1.2 Vibrator

The action from the vibrator was modelled using the method described in Section
2.4.1, thus the unbalanced vertical force was modelled as

Fv(t) = Me · ω2 · sin(ωt) (8.2)

and the static surcharge force as

F0 = m0 · g + Fl (8.3)
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where Me is the eccentric moment, ω is the driving frequency in rad/s, t is the time,
m0 is the bias mass, and Fl is the leader force. The eccentric moment Me was varied
in the different simulations, while the leader force Fl was assumed to vary with the
penetration depth as determined in the model calibration in Section 7.4.

8.1.3 Shaft resistance

Shaft resistance was included in the model with a spring and a slider, where the linear
soil model for shaft resistance, described in Section 5.3, was used to describe the
spring–slider behaviour. A maximum shaft resistance force Rs,max was calculated as

Rs,max = Ωp

∫ z

0

τd dz (8.4)

with the dynamic shaft resistance profile τd from Section 5.2 and where z is the depth
of the sheet pile toe and Ωp is the perimeter of the sheet pile. The limits for the slider
were set to −Rs,max ≤ Rs ≤ Rs,max. The stiffness for the spring was calculated as

ks =
Rs,max

Qs

(8.5)

with the shaft quake Qs = 2.5 mm.

8.1.4 Toe resistance

Toe resistance was included in the model with a spring and a slider, where the linear
soil model for toe resistance, described in Section 5.3, was used to describe the spring–
slider behaviour. A maximum toe resistance force Rt,max was calculated as

Rt,max = Ap · qd(z) (8.6)

with the dynamic toe resistance profile qd from Section 5.2 and where z is the depth
of the sheet pile toe and Ap is the sheet pile area. The limits for the slider were set to
0 ≤ Rt ≤ Rt,max. The stiffness for the spring was calculated as

kt =
Rt,max

Qt

(8.7)

with the toe quake Qt = 2.8 mm.

8.1.5 Impact with boulder

Impact with a boulder was modelled in the same manner as the MDOF model, i.e.
by changing the behaviour of the toe resistance so that it corresponded to the contact
behaviour observed in the FE model. The method used to determine the behaviour
is described in detail in Section 6.4.1. The impact at the center of the web was
studied, and the same behaviour as in the MDOF model was assumed. The parameters
describing the impact behaviour is repeated in Table 8.2 for simplicity. See Section
7.1.6 for a description of how the parameters were estimated. The impact location is
visualised in Figure 8.2.
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Table 8.2: Parameters describing the impact behaviour.

.

Parameter Value Unit

Loading stiffness 100 MN/m
Unloading stiffness 100 MN/m
Maximum load 300 kN

x x

y

y
Point of contact

Figure 8.2: Illustration of the impact location.

8.2 Simulation method

The simulations were carried out using the Central Difference Method by implementing
the iteration scheme for SDOF systems from Section 3.1. The initial conditions needed
to start the iteration scheme was set to zero, however, this should have had no effect
on the results as the iterations were continued until a steady state had been reached.
The time step size was set to 5 microseconds, which is motivated with the convergence
study in Section 8.3.

The MATLAB code that was written to set up the model, and run the simulations is
included in Appendix B.2.

8.3 Convergence study

A convergence study was carried out to ensure that a small enough time-step was
used in the simulations. The convergence study was done by visually comparing the
accelerations during steady state for different time steps. The input used in the con-
vergence study is summarised in Table 8.3. The peak acceleration as a function of the
time step size is shown in Figure 8.3, from which it was concluded that a time step
size of 5 microseconds was sufficient.
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Table 8.3: Parameters used in the convergence study.

Parameter Value Unit

Penetration depth 10 m
Eccentric moment, Me 6 kgm
Leader force, Fl 30 kN
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Figure 8.3: Convergence study for the time step size. Peak acceleration as a function of
the time step size.

8.4 Simulations

The simulations that were carried out with the SDOF model are described in this
section, while selected results from the simulations are shown in Section 7.6.

8.4.1 Vibratory driving simulations

Vibratory driving at two, six and ten metres penetration depth were simulated to
study if the model produces result that correspond well with the reference case. The
simulations were run until it was certain that a steady state had been reached

The parameters used in the three simulations are shown in Table 8.4.

Table 8.4: Input parameters for vibratory driving simulations.

Penetration depth Eccentric moment Leader force
[m] Me [kgm] Fl [kN]

10 6 30
6 6 5
2 6 −14.5
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8.4.2 Impact simulations

The impact described in Section 8.1.5 was simulated. The penetration depth was
assumed to ten metres and two different eccentric moments, 6 and 12 kgm, were studied
for the impact. The impact simulations were, as previously mentioned, carried out by
changing the behaviour of the toe resistance so that it corresponded to the contact
force versus displacement curves from the FE model. The simulations were carried
out by running an ordinary vibratory driving simulation until a steady state had been
reached and then changing the behaviour of the toe resistance.

The parameters used in the simulations are shown in Table 8.5.

Table 8.5: Input parameters for impact simulations.

.

Parameter Value Unit

Penetration depth 10 m
Eccentric moment, Me 6 & 12 kgm
Leader force, Fl 30 kN
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8.5 Results

Selected results from the simulations with the SDOF model are presented in this
section. Some brief comments on the results are also provided while a more in-depth
discussion of the results is provided in Section 8.6. Note that the positive direction is
downwards, e.g., a positive displacement corresponds to a downward displacement.

8.5.1 Vibratory driving simulations

Selected results from the vibratory driving simulations at two, six and ten metres
penetration depth are presented in this section. The results were taken at a time
when a steady state had been reached.

Vibratory driving at two metres depth

Figures 8.4 and 8.5 show displacement and acceleration for a penetration depth of two
metres.

Figure 8.4 shows the displacement of the sheet pile. The upward displacement amp-
litude is approximately 3.3 mm while the downward displacement amplitude is ap-
proximately 4.7 mm. The penetration speed is about 55 mm/s. The results from
the reference case for two metres penetration depth shows an upward displacement
amplitude of about 3 mm, a downward displacement amplitude of about 5 mm and a
penetration speed of about 80 mm/s.

Figure 8.5 shows the acceleration of the sheet pile. The acceleration varies between
13g in the upward direction and 13.5g in the downward direction. The results from the
reference case for two metres penetration depth show accelerations at the sheet pile
toe varying between 15g in the upward direction and 11g in the downward direction.

105



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Time [s]

-5

0

5

10

15

20

D
is
p
la

ce
m

en
t
[m

m
]

Figure 8.4: Displacement of sheet pile versus time for 2 m penetration depth.
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Figure 8.5: Acceleration of sheet pile versus time for 2 m penetration depth.

106



Vibratory driving at six metres depth

Figures 8.6 and 8.7 show displacement and acceleration for a penetration depth of six
metres.

Figure 8.6 shows the displacement of the sheet pile. The upward displacement amp-
litude is approximately 3 mm while the downward displacement amplitude is approx-
imately 5.3 mm. The penetration speed is about 92 mm/s. The results from the
reference case for six metres penetration depth show an upward displacement amp-
litude of about 2.5 mm, a downward displacement amplitude of about 5 mm and a
penetration speed of about 120 mm/s.

Figure 8.7 shows the acceleration of the sheet pile. The acceleration varies between
13.5g in the upward direction and 14g in the downward direction. The results from
the reference case for six metres penetration depth show accelerations at the sheet pile
toe varying between 18g in the upward direction and 12g in the downward direction.
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Figure 8.6: Displacement of sheet pile versus time for 6 m penetration depth.
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Figure 8.7: Acceleration of sheet pile versus time for 6 m penetration depth.
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Vibratory driving at ten metres depth

Figures 8.8 and 8.9 show displacement and acceleration for a penetration depth of ten
metres.

Figure 8.8 shows the displacement of the sheet pile. The upward displacement amp-
litude is approximately 3.1 mm while the downward displacement amplitude is ap-
proximately 5.8 mm. The penetration speed is about 107 mm/s. The results from the
reference case for ten metres penetration depth show an upward displacement amp-
litude of about 2.5 mm, a downward displacement amplitude of about 5 mm and a
penetration speed of about 130 mm/s.

Figure 8.9 shows the acceleration of the sheet pile. The acceleration varies between
14g in the upward direction and 15g in the downward direction. The results from the
reference case for ten metres penetration depth show accelerations at the sheet pile
toe varying between 15g in the upward direction and 12g in the downward direction.
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Figure 8.8: Displacement of sheet pile versus time for 10 m penetration depth.
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Figure 8.9: Acceleration of sheet pile versus time for 10 m penetration depth.
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8.5.2 Impact simulations

Selected results from the impact simulations with eccentric moments of 6 and 12 kgm
are presented in this section.

Impact–eccentric moment of 6 kgm

Figures 8.10 and 8.11 show displacement and acceleration before and after impact for
an eccentric moment of 6 kgm. The first contact occurs at about t = 0.108 s.

Figure 8.10 shows that the penetration speed is approximately 107 mm/s before the
impact and 0 mm/s after the impact. Figure 8.11 shows that the acceleration varies
between 14g in the upward direction and 15g in the downward direction before the
impact, which corresponds to a peak-to-peak amplitude of 29g. The acceleration varies
between 20g in the upward direction and 18g in the downward direction after the im-
pact, which corresponds to a peak-to-peak amplitude of 38g. Thus, the impact results
in a 43% increase in upward acceleration, a 20% increase in downward acceleration
and a 31% increase in peak-to-peak amplitude.
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Figure 8.10: Displacement of sheet pile versus time for for an eccentric moment of 6 kgm.
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Figure 8.11: Acceleration of sheet pile versus time for an eccentric moment of 6 kgm.
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Impact–eccentric moment of 12 kgm

Figures 8.12 and 8.13 shows displacement and acceleration before and after impact for
an eccentric moment of 12 kgm. The first contact occurs at about t = 0.108 s.

Figure 8.12 shows that the penetration speed before the impact is approximately 393
mm/s and 0 mm/s after the impact. Figure 8.13 shows that the acceleration varies
between 26g in the upward direction and 28g in the downward direction before the
impact, which corresponds to a peak-to-peak amplitude of 54g. The acceleration var-
ies between 34g in the upward direction and 30g in the downward direction after the
impact, which corresponds to a peak-to-peak amplitude of 64g. Thus, the impact res-
ults in a 31% increase in upward acceleration, a 7% increase in downward acceleration
and a 19% increase in peak-to-peak amplitude.
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Figure 8.12: Displacement of sheet pile versus time for for an eccentric moment of 12
kgm.
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Figure 8.13: Acceleration of sheet pile versus time for an eccentric moment of 12 kgm.
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8.6 Analysis

A discussion of the results in Section 8.5 are presented in this section.

Vibratory driving simulations

The model produced penetration speeds that are slightly lower than in the reference
case. The maximum deviation in penetration speed is at two metres penetration
depth, where the model produced a penetration speed (55 mm/s) that is about 31%
lower than the corresponding penetration speed in the reference case (80 mm/s). The
reason why the penetration speeds are consistently lower than in the reference case is
not obvious, but it might be reasonable to assume that it is an effect of neglecting the
longitudinal behaviour of the sheet pile.

The displacement amplitudes produced by the model correspond rather well to the
reference case. The general shape of the displacement versus time curves also corres-
pond well to the reference case. However, some deviations can be seen. The model
produced upward and downward displacement amplitudes that in general are slightly
higher than in the reference case. The maximum deviation in displacement amplitude
is at ten metres penetration depth, where the model produced an upward displace-
ment amplitude (3.1 mm) that is about 24% higher than the corresponding upward
displacement amplitude in the reference case (2.5 mm). A part of these deviations can
probably be attributed to human errors when estimating the displacement amplitudes
from the plots in the reference case.

The accelerations produced by the model correspond fairly well to the reference, al-
though there are some deviations. The maximum deviation in acceleration amplitude
is at six metres penetration depth, where the model produced an upward acceleration
amplitude (13.5g) that is about 25% lower than the corresponding upward acceleration
amplitude in the reference case (18g). A part of these deviations can, as previously
mentioned, probably be attributed to human errors when estimating the acceleration
amplitudes from the plots in the reference case.

Impact simulations

The impact simulations show that the penetration speed goes to zero almost instantly
when the impact occurs, which indicates that the relatively simple impact model works
fairly well. The acceleration amplitude in both upward and downward direction in-
creases after impact, where there generally is a higher increase in upward acceleration
than in downward acceleration. The increase in peak-to-peak amplitude is 31% for the
case with 6 kgm eccentric moment and 19% for the case with 12 kgm eccentric mo-
ment. The acceleration curves do not display any noticeable noise after the impacts,
which was expected since the longitudinal behaviour of the sheet pile was neglected in
this model.
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9 Discussion

This chapter presents a general discussion of the results of the master’s dissertation,
and of the methods used to produce the results. Comparisons of the results from the
three models are also presented. Note that a more in-depth discussion of the individual
results is provided in Sections 6.6, 7.7, and 8.6.

Model comparison

The results from the vibratory driving simulations are similar for all three models. The
displacement amplitudes and acceleration amplitudes are of the same magnitude and
the characteristics of the vibratory driving behaviours are similar, as well. The uniaxial
MDOF model and FE model both display similar overtones in the toe accelerations.
This behaviour could not be seen in the SDOF model since the longitudinal behaviour
of the sheet pile was neglected. The penetration speeds from the uniaxial MDOF
model and FE model are very similar while the SDOF model produced slightly lower
penetration speeds. The similar results in all three models indicate that it might be
more efficient to simulate vibratory driving with simpler models. Furthermore, it seems
like the uniaxial MDOF model is the most advantageous model when considering that
it produces results that are very similar to the results from the FE model, and that it
requires a lot less time to run the simulations.

The results from the impact simulations are also similar for the three models. The
displacements and accelerations before and after impact are of the same magnitude
in all three models. The Fast Fourier Transformations in the uniaxial MDOF model
and FE model also show similar results. This again indicates that it might be more
advantageous to use simpler models to simulate impacts during vibratory driving.
However, it should be noted that it might be a bit cumbersome to model the impacts
that have a higher degree of non-linearity (for example the impact at the flange edge) in
the uniaxial MDOF model and SDOF model. Furthermore, the simple models do not
provide any visualisation of the damage that has occurred. Finally, there might also
be some dynamic effects that get neglected when determining the impact behaviour
through quasi-static analysis.

Overtones in toe accelerations

Both the uniaxial MDOF model and FE model displayed rather significant overtones
in the toe accelerations. This was somewhat reduced by including material damping
in the models, but the overtones are still rather significant. This could probably have
been reduced further by including more damping in the models. Furthermore, in the
FE model, it would probably be beneficial to apply the shaft resistance over the pile
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shaft instead of at discrete points. Exactly how to do this without making the com-
putations very heavy is not obvious. Another method to reduce the influence of high
frequencies could be to perform modal reductions. The effect of the surrounding soil,
and the vibrator unit, however, makes it complex to determine the modal behaviour
theoretically.

Soil model

The soil model used in the dissertation is a rather simple linear model. The linear soil
model was chosen as it gave results that corresponded relatively well to the reference
case. It was also rather easy to implement the linear soil model in the FE model. The
hyperbolic soil model, that was presented in the literature review, was tested in the
uniaxial MDOF model in an early stage of the master’s dissertation. The results from
these tests did not correspond well to the reference case, for example, the penetration
speeds were considerably lower than in the reference case. Based on this, it might
be tempting to assume that the linear soil model is a more accurate representation
of the true physical behaviour of the soil. However, one should be careful with such
assumptions as linearity is fairly seldom in the physical world. It seems that not much
is known about the dynamic soil resistances during vibratory driving, and the authors
of the master’s dissertation found few material models that describe these behaviours.
It would therefore be of interest to conduct field studies where the dynamic resistances
are accurately measured during vibratory driving. If a large number of such field
studies were carried out it might be possible to establish accurate material models
that describe the variation of the dynamic resistances during vibratory driving.

Stop criterion

The results from the impact simulations indicate that a stop criterion possibly could
be based on abrupt changes in acceleration amplitude. The results indicate that
it would be advantageous to continuously perform Fast Fourier Transformations of
the accelerations and stop the vibratory driving if there is an abrupt increase of the
acceleration amplitude at the driving frequency. Exactly how large the increase should
be for the driving to stop cannot be concluded from the dissertation, mainly because
a limited number of impact locations and boulder shapes were studied, and because
the results from the impact simulations have not been verified with experimental field
tests. Furthermore, the results from impacts at the flange edge indicate that it might
be problematic to form a stop criterion solely based on changes in vertical acceleration,
as these changes were rather small for the impacts at the flange edge. It might therefore
be advantageous to also include lateral accelerations in a future stop criterion.
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10 Conclusion and suggestions for
further investigations

The purpose of the master’s dissertation was to investigate if numerical models could
be used to simulate vibratory driving of sheet piles, both with and without impact with
boulders, and to investigate if a stop criterion could be based upon these numerical
models.

The results of the vibratory driving simulations without impact indicate that the estab-
lished FE model, MDOF model, and SDOF model all could simulate vibratory driving
fairly well, where the FE model and uniaxial MDOF model gave almost identical res-
ults. It is therefore concluded that, with regards to the vibratory driving simulations
only, the uniaxial MDOF model is the most efficient. The results of the impact simu-
lations were also similar in all three models. However, based on the complexity of the
impacts, it is concluded that the FE model is best suited for the impact simulations.

Based on the above, it was concluded that it would be beneficial to further develop
both the uniaxial MDOF model and the FE model; the uniaxial model can be used to
make quick vibro-driveability simulations, while modelling of the vibratory driving in
the FE model is a prerequisite for making more accurate impact simulations.

The work with the dissertation resulted in the conclusion that there is a lack of accurate
models of how the shaft resistance and toe resistance varies during vibratory driving.
Further investigation on the subject is needed if truly accurate models of vibratory
driving are to be established.

Finally, the results of the dissertation indicate that it might be possible to enforce a
stop criterion by attaching accelerometers to the sheet pile head, and creating a system
that continuously does FFTs of the accelerations and that stops the vibratory driving
if there is a significant and abrupt change in acceleration amplitude at the driving
frequency.
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Suggestions for further investigations

During the work with the master’s dissertation, some further investigation areas were
discovered that would contribute to the current understanding of vibratory driving of
sheet piles, and that would contribute in the development of a stop criterion. Fur-
thermore, to confirm, and improve the models established in the dissertation, further
investigation is needed. A list of potential continuations of the master’s dissertation
is presented below:

• Not much is known about the reduction in dynamic soil resistance during vi-
bratory driving, and how the soil resistances vary during vibratory driving. The
phenomenon of soil liquefaction during vibratory driving needs to be studied fur-
ther, as well. This could probably be studied through experimental field studies.

• The models in the dissertation could be improved by calibrating them against
further experimental field studies. It would be advantageous to calibrate the
models against field studies where all vibratory related parameters are known,
i.e., driving frequency, leader force variation, etc. The calibration could then be
focused on other model parameters, such as damping and soil behaviour.

• The models in the dissertation could be improved by making them more ad-
vanced, e.g., by including interlocking friction, lateral soil pressure, failure of the
impact obstacle, displacement of the impact obstacle, etc.

• Rather than using only vertical accelerations to develop a stop criterion, it could
potentially be more advantageous to also base it upon lateral acceleration. This
might also be a good way of detecting impacts at the flange edges, which proved
to be problematic with the models in the dissertation.

• Studies regarding the effects of driving the sheet piles at the centre of gravity,
rather than at the web, would be of interest.
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Appendix A

Additional theory

A.1 Hyperbolic soil models

The hyperbolic soil models suggested by Moulai-Khatir et al. [7] is presented below.
The hyperbolic soil models are shown in Figure A.1 where the shaft resistance τ (stress)
varies between the maximum shaft resistance τmax and minimum shaft resistance τmin,
and the toe resistance q (stress) varies between the maximum toe resistance qmax and
0.

kl

kl

ku

τ

τmax

u

τmin

qmax
kl kl

ku

uu u0

q

u

Figure A.1: Variation of shaft resistance τ , and toe resistance q with the displacement D,
modified after Moulai-Khatir et al. [7].

The loading curve for the shaft resistance in Figure A.1 is determined as

τ = τp +
kl · (D −Dp)

(1 + (kl·(D−Dp)

τmax−τp )µ)
1
µ

, (A.1)

and the unloading curve as

τ = τp −
ku · (Dp −D)

(1 + (ku·(Dp−D)

τp−τmin )µ)
1
µ

, (A.2)

where up is the displacement at the previous load reversal, τp is the load at the previous
load reversal, kl is the loading stiffness, ku is the unloading stiffness, and µ is an
empirical shape parameter.
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The loading curve for the toe resistance in Figure A.1 is determined as

q = qp +
kl · (D −Dp)

(1 + (kl·(D−Dp)

qmax−qp )µ)
1
µ

(A.3)

if the load at previous reversal qp was larger than 0, and as

q =
kl · (D −D0)

(1 + (kl·(D−Do)
qmax

)µ)
1
µ

+ qp (A.4)

if the load at previous reversal was 0.

The unloading curve for the toe resistance in Figure A.1 is determined as

q = qp + (D −Dp) · ku. (A.5)

Furthermore, the toe resistance is assumed to be zero between the points uu and u0

in Figure A.1, as the toe is not in contact with the soil. Moulai-Khatir et al. [7]
presented the parameters shown in Table A.1 for the hyperbolic model for H-piles and
open-ended pipe piles driven in saturated sands. The parameters were, according to
Moulai-Khatir et al. [7], obtained from large scale laboratory tests.

Table A.1: Parameters for hyperbolic soil model, based on Moulai-Khatir et al. [7].

Pipe pile H-pile

Toe loading stiffness 2,006 MN/m3 2,082 MN/m3

Shaft loading stiffness 1.75 MN/m3 1.78 MN/m3

Toe loading exponent, µ 2.31 2.32
Shaft loading exponent, µ 2.53 2.46

Toe unloading stiffness 2,169 MN/m3 2,112 MN/m3

Shaft unloading stiffness 1.76 MN/m3 1.82 MN/m3

Toe unloading exponent, µ 2.30 2.35
Shaft unloading exponent, µ 2.34 2.41
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A.2 Amplitude values of dynamic soil resistances

The profiles for the amplitude values of the dynamic shaft resistance τd and dynamic
toe resistance qd (stresses) were estimated with the method described in Section 2.5.3
and based on the simplified soil resistances and friction ratio in Figure A.2, repeated
here for simplicity. The method used to estimate the amplitude values of the dynamic
soil resistances is summarised below.

D
ep

th
[m

]

0 4 8 12

qc [MPa]

0

5

10

15

20

25

0 20 40 60

fc [kPa]

0

5

10

15

20

25

0 1 2

FR [%]

0

5

10

15

20

25

Figure A.2: Simplified tip resistance qc, skin friction fc, and friction ratio FR, plotted
versus soil depth.

The acceleration amplitude for the sheet pile was estimated as

a =
Meω

2

mdyn

=
6 · (41 · 2 · π)2

2450 + 930
= 117.8 m/s2 (A.6)

which corresponds to the acceleration ratio

αr =
117.8

g
= 12g (A.7)

where the eccentric moment was assumed to Me = 6 kgm, the driving frequency was
assumed to 41 Hz and the dynamic mass mdyn was assumed to (2450 + 930) kg,
which corresponds to the dynamic mass of the vibrator and the mass of the sheet pile,
respectively.
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The liquefied soil resistances ql and τl were calculated as:

τl = τs ·
[
(1− 1

L
) · e−

1
FR + 1/L

]
(A.8)

ql = qs ·
[
(1− 1

L
) · e−

1
FR + 1/L

]
, (A.9)

where the static toe resistance qs was taken as the tip resistance qc in Figure A.2, the
static shaft resistance τs as the skin friction fc in Figure A.2, and the friction ratio FR
from Figure A.2. The empirical liquefaction factor L was assumed to 7. The estimated
liquefied soil resistances are shown in Figure A.3.
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Figure A.3: Estimated liquefied toe resistance ql, and liquefied shaft resistance τl, plotted
versus penetration depth.

The dynamic soil resistances τd and qd were calculated as:

τd = (τs − τl) · e−αr + τl (A.10)

qd = (qs − ql) · e−αr + ql. (A.11)

The influence of the acceleration ratio is visualised in Figure A.4, where the dynamic
shaft resistance at ten metres penetration depth is plotted as a function of the acceler-
ation ratio. The resulting profiles for the dynamic toe and shaft resistances are shown
in Figure A.5.
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Figure A.4: Influence of the acceleration ratio on the dynamic shaft resistance.
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Figure A.5: Estimated dynamic toe resistance qd, and dynamic shaft resistance τd,
plotted versus penetration depth.

Now the next step would have been to estimate a new acceleration ratio, taking the
resistances into account. However, Figure A.4 shows that this is not necessary as the
acceleration ratio would need to be lowered from ∼ 12g to ∼ 4g for the dynamic shaft
resistances to change. Thus, it was assumed that the dynamic soil resistance profiles
in Figure A.5 are valid.
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A.3 Rayleigh damping

This section is based upon Chopra [11].

Rayleigh damping is the combination of mass-proportional damping, and stiffness-
proportional damping in a structure. The damping constants α, and β, together with
the established orthogonal mass-, and stiffness matrices M , and K, respectively, form
the damping matrix C such as

C = αM + βK. (A.12)

The damping coefficients are dependant on specific damping ratios ζn at any two
modes of vibration, at the corresponding natural frequency ωn. This expression can
be formulated as

ζn =
α

2ωn
+
βωn

2
, (A.13)

and can be seen in Figure A.6. Generally, approximately the same damping ratios oc-
cur for several modes of vibration. To get a frequency and damping ratio proportion
that corresponds to experimental tests, and physical behaviour, the damping coeffi-
cients α, and β must be solved from two algebraic expressions of Equation (A.13).
Two damping ratios, and corresponding natural frequencies, must be chosen to give
the proportion that deviates the least from experimental tests results, and physical
behaviour.

ζn

ωn

Rayleigh damping

ζn = α
2ωn

+ βωn

2

Mass-proportional damping, α

Stiffness-proportional damping, β

Figure A.6: Variation of damping ratio versus natural frequency for Rayleigh damping,
mass-proportional damping, and stiffness proportional damping.

The stiffness-proportional damping can be interpreted as the energy dissipation arising
from inner deformation in the structure, while the mass-proportional damping can be
seen as air damping the structure, which often is neglectable.
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Appendix B

MATLAB code

B.1 Uniaxial MDOF model

% Anton Andersson & Johannes Jonsson

% Development of stop criterion for vibratory driving of steel sheet piles

% Master’s Dissertation

% Uniaxial MDOF model

clear all

close all

% General

g = 9.81;

Input

Depth = 10; % Penetration depth

Me = 6; % Eccentric moment

Fl = 30e3; % Leader force

Sheet pile parameters

Lp = 14; % Length

Ap = 84.98*1e-4; % Area

Pp = 1.706; % Perimeter

Ep = 210e9; % Young’s modulus

fy = 355e6; % Yield stress

rho = 7800; % Density

mp = Lp*rho*Ap; % Pile mass

Vibrator parameters

fd = 41; % Driving frequency

m0 = 1020; % Bias mass

mv = 2450; % Vibrator dynamic mass

F0 = m0*g + Fl; % "Static load" + leader load

mdyn = mv + mp; % Total dynamic mass

125



w = 2*pi*fd; % Angular frequency

P0 = Me*w^2; % Amplitude of harmonic load

Dynamic toe and shaft resistance based on CPT

L = 7; % Liquefaction factor 4-10

zCPT = linspace(0,24,25); % Depth of CPT points

% Shaft friction from CPT

fc = 1e3*[40 28 19 16 15 11 12 15 20 28 28 23 ...

19 17 11 12 10 14 20 50 30 20 20 12 13];

% Toe resistance from CPT

qc = 1e6*[2 1.6 2.5 2 2.7 3.8 3.2 3 3.6 4 2.9 2.5 ...

4.3 5 6.2 7.1 7 5.9 6 6.1 6.4 7 7.2 7.1 7.7];

FR = 100*fc./qc; % Friction ratio

aratio = (Me*w^2)/(g*mdyn); % Estimated Acceleration [g]

Tl = fc.*((1-1/L).*exp(-1./FR)+1/L); % Liquefied Shaft Resistance

Td = (fc-Tl).*exp(-aratio)+Tl; % Dynamic shaft resistance

ql = qc.*((1-1/L).*exp(-1./FR)+1/L); % Liquefied Toe Resistance

qd = (qc-ql).*exp(-aratio)+ql; % Dynamic Toe resistance

Model parameters

nel = 14; % Number of elements

Lel = Lp/nel; % Element length

z = Depth-Lp:Lel:Depth; % Depth for each node, (-) above ground

for i = 1:nel

Edof(i,:) = [i; i; i+1]; % Topology

end

ndof = max(max(Edof)); % Number of nodes

Stiffness and mass

Ke = Ep*Ap/Lel*[1 -1; -1 1]; % Element sheet pile stiffness

Me = rho*Ap*Lel*[0.5 0; 0 0.5]; % Element sheet pile mass

K = zeros(ndof,ndof);

M = zeros(ndof,ndof);

M(1,1) = mv; % Add dynamic vibrator mass to first node

% Calculate stiffness and mass matrices

for i=1:nel

index = Edof(i,2:end);

K(index,index) = K(index,index) + Ke;

M(index,index) = M(index,index) + Me;
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end

Gravitational forces

gvec = g*ones(ndof,1); % Gravity vector [g ; g ; g ;... g]

fextg = M*gvec; % Gravity force vector

Soil resistance vectors

% Interpolate to get more points before intergration

zint = 0:Lel/2:24;

Ts_int = interp1(zCPT,fc,zint);

qs_int = interp1(zCPT,qc,zint);

Td_int = interp1(zCPT,Td,zint);

qd_int = interp1(zCPT,qd,zint);

% Calculate maximum dynamic shaft resistance for each node

for i = 1:ndof

% Integration limits

zlim1 = z(i) - Lel/2;

zlim2 = z(i) + Lel/2;

if zlim1 < 0

zlim1 = 0;

end

if zlim2 < 0

zlim2 = 0;

end

if zlim2 > Depth

zlim2 = Depth;

end

if zlim1 == 0 && zlim2 == 0

RsMax = 0;

continue

end

lim1indx = find(zint == zlim1);

lim2indx = find(zint == zlim2);

% Maximum dynamic shaft resistance vector

RsMax(i,1) = Pp*trapz(zint(lim1indx:lim2indx),Td_int(lim1indx:lim2indx));

end
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% Shaft resistance spring stiffness for each node

Qs = 2.5e-3; % Quake, (elastic limit)

for j = 1:ndof

ks(j) = RsMax(j)/Qs;

end

% Toe resistance

RtMax = zeros(ndof,1);

zToeindx = find(zint == Depth); % Index for bottom node

RtMax(ndof) = Ap*qd_int(zToeindx); % Max toe resistance

% Toe resistance spring stiffness for each node

Qt = 2.8e-3; % Toe quake (elastic limit)

for j = 1:ndof

kt(j) = RtMax(j)/Qt;

end

Material damping for sheet pile

wn = sqrt(eig(K,M)); % Natural frequencies

xi = 0.01; % Damping ratio

betaD = 2*xi/wn(2); % Stiffness proportional damping

alphaD = 0; % Mass proportional damping

C = alphaD*M + betaD*K;

Total time and size of timestep

tottime = 1; % Total simulation time

dt = 5e-6; % Size of timestep

nstep = round(tottime/dt); % Number of steps

Initial quantities

t = 0; % Initial time

u0 = zeros(ndof,1); % Initial displacements

uprim0 = zeros(ndof,1); % Initial velocities

fext_0 = zeros(ndof,1); % Initial forces

ubiz0 = zeros(ndof,1); % Initial accelerations

% Initial accelerations if inital disp., vel. and/or forces is not 0.

% ubiz0 = M\(fext_0 - C*uprim0 - K*u0);

u_1 = u0 - dt*uprim0 + dt^2*ubiz0/2; % Displacements at i-1

% Iteration quantities

khat = M/dt^2+C/(2*dt); a = M/dt^2-C/(2*dt); b = K - 2*M/dt^2;
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% Special case for initial step

in = 1;

% Vectors and matrices

Rs = zeros(ndof,1);

Rt = zeros(ndof,1);

u = zeros(ndof,nstep);

uRt = zeros(ndof,nstep);

Start iteration

for i = 1:nstep

% Current time

t = t + dt;

tvec(i) = t;

% Special case for first iteration

if in == 1

ui = u0;

u_i = u_1;

v_i = uprim0;

else

ui = u(:,i);

u_i = u(:,i-1);

v_i = v(:,i-1);

end

% Determine shaft resistance

for j = 1:ndof

% Set shaft resistance to zero if node is above ground

if RsMax(j) == 0

Rs(j) = 0;

continue

end

% Displacement increment

du = ui(j) - u_i(j);

% If increment in u is 0, set increment in Rs to 0

if du == 0

dRs(j) = 0;

else

dRs(j) = du*ks(j);

end
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% New shaft resistance

Rs(j) = Rs(j) + dRs(j);

% If new shaft resistance is larger than max, set to max

% If new shaft resistance is smaller than min, set to min

if abs(Rs(j)) >= RsMax(j)

Rs(j) = sign(Rs(j))*RsMax(j);

end

end

% Determine toe resistance

for j = 1:ndof

% Set toe resistance to zero if node is not at bottom

if RtMax(j) == 0

Rt(j) = 0;

continue

end

% Displacement increment

du = ui(j) - u_i(j);

% If increment in u is 0, set increment in Rs to 0

% else set dRs = du*kt

if du == 0

dRt(j) = 0;

else

dRt(j) = du*kt(j);

end

% If previous Rt was larger than 0, and current Rt will be smaller

% than zero, set displacement limit for when loading happens again

if Rt(j) > 0 & Rt(j) + dRt(j) <= 0

uRt(j) = ui(j);

end

% New toe resistance

Rt(j) = Rt(j) + dRt(j);

% If new toe resistance is larger than max, set to max

if Rt(j) >= RtMax(j)

Rt(j) = RtMax(j);

end

% If new toe resistance is smaller than 0, set to 0

if Rt(j) < 0

Rt(j) = 0;
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end

% If current displacement is less than limit for loading,

% set toe resistance to 0

if ui(j) < uRt(j)

Rt(j) = 0;

end

end

% External forces

fext = fextg - Rs - Rt;

fext(1,1) = fext(1,1) + F0 + P0*sin(w*t);

% Iteration "force"

phat = fext - a*u_i - b*ui;

% Solve for u(i+1)

u(:,i+1) = khat\phat;

% Calculate velocities and accelerations

v(:,i) = (u(:,i+1)-u_i)/(2*dt);

A(:,i) = (u(:,i+1)-2*ui + u_i)/(dt^2);

% Reset "in" for first iteration

in = 0;

end

B.2 SDOF model

% Anton Andersson & Johannes Jonsson

% Development of stop criterion for vibratory driving of steel sheet piles

% Master’s Dissertation

% SDOF model

clear all

close all

% General

g = 9.81;

Input

Depth = 10; % Penetration depth

Me = 6; % Eccentric moment

Fl = 30e3; % Leader force
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Sheet pile parameters

Lp = 14; % Length

Ap = 84.98*1e-4; % Area

Pp = 1.706; % Perimeter

Ep = 210e9; % Young’s modulus

fy = 355e6; % Yield stress

rho = 7800; % Density

mp = Lp*rho*Ap; % Pile mass

Vibrator parameters

fd = 41; % Driving frequency

m0 = 1020; % Bias mass

mv = 2450; % Vibrator dynamic mass

F0 = m0*g + Fl; % "Static load" + leader load

mdyn = mv + mp; % Total dynamic mass

w = 2*pi*fd; % Angular frequency

P0 = Me*w^2; % Amplitude of harmonic load

Dynamic toe and shaft resistance based on CPT

L = 7; % Liquefaction factor 4-10

zCPT = linspace(0,24,25); % Depth of CPT points

% Shaft friction from CPT

fc = 1e3*[40 28 19 16 15 11 12 15 20 28 28 23 ...

19 17 11 12 10 14 20 50 30 20 20 12 13];

% Toe resistance from CPT

qc = 1e6*[2 1.6 2.5 2 2.7 3.8 3.2 3 3.6 4 2.9 2.5 ...

4.3 5 6.2 7.1 7 5.9 6 6.1 6.4 7 7.2 7.1 7.7];

FR = 100*fc./qc; % Friction ratio

aratio = (Me*w^2)/(g*mdyn); % Estimated Acceleration [g]

Tl = fc.*((1-1/L).*exp(-1./FR)+1/L); % Liquefied Shaft Resistance

Td = (fc-Tl).*exp(-aratio)+Tl; % Dynamic shaft resistance

ql = qc.*((1-1/L).*exp(-1./FR)+1/L); % Liquefied Toe Resistance

qd = (qc-ql).*exp(-aratio)+ql; % Dynamic Toe resistance

Soil resistances

% Shaft resistance

ulimpos = find(zCPT == Depth);

% Maximum total shaft resistance
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RsMax = Pp*trapz(zCPT(1:ulimpos),Td(1:ulimpos));

Qs = 2.5e-3; % Quake, (elastic limit)

ks = RsMax/Qs; % Shaft resistance loading/unloading stiffness

% Toe resistance

RtMax = Ap*qd(ulimpos); % Maximum toe resistance

Qt = 2.8e-3; % Toe quake (elastic limit)

kt = RtMax/Qt; % Toe resistance loading/unloading stiffness

Total time and size of timestep

tottime = 1; % Total simulation time

dt = 5e-6; % Size of timestep

nstep = round(tottime/dt); % Number of steps

Initial quantities

t = 0; % Initial time

u0 = 0; % Initial displacement

uprim0 = 0; % Initial velocity

ubiz0 = 0; % Initial acceleration

fext_0 = 0; % Initial force

u_1 = 0; % Displacement at i-1

% Iteration quantities

khat = mdyn/dt^2; a = mdyn/dt^2; b = -2*mdyn/dt^2;

% Special case for initial step

in = 1;

% Initial values

Rs = 0;

Rt = 0;

uRt = 0;

u = 0;

Start iteration

for i = 1:nstep

% Current time

t = t + dt;

tvec(i) = t;

% Special case for first iteration
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if in == 1

ui = u0;

u_i = u_1;

v_i = uprim0;

else

ui = u(i);

u_i = u(i-1);

v_i = v(i-1);

end

% Determine shaft resistance

du = ui - u_i; % Displacement increment

% If increment in u is 0, set increment in Rs to 0

if du == 0

dRs = 0;

end

if du > 0

dRs = du*ks;

end

if du < 0

dRs = du*ks;

end

% New shaft resistance

Rs = Rs + dRs;

% If new shaft resistance is larger than max, set to max

% If new shaft resistance is smaller than min, set to min

if abs(Rs) >= RsMax

Rs = sign(Rs)*RsMax;

end

% Determine toe resistance

du = ui - u_i; % Displacement increment

% If increment in u is 0, set increment in Rt to 0

% else set dRt = du*kt

if du == 0

dRt = 0;

else

dRt = du*kt;

end
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% If previous Rt was larger than 0, and current Rt will be smaller

% than zero, set displacement limit for when loading happens again

if Rt > 0 && Rt + dRt <= 0

uRt = ui;

end

% New toe resistance

Rt = Rt + dRt;

% If new toe resistance is larger than max, set to max

if Rt >= RtMax

Rt = RtMax;

end

% If new toe resistance is smaller than 0, set to 0

if Rt < 0

Rt = 0;

end

% If current displacement is less than limit for loading,

% set toe resistance to 0

if ui < uRt

Rt = 0;

end

% External forces

fext = F0 + P0*sin(w*t) + mdyn*g - Rs - Rt;

% Iteration "force"

phat = fext - a*u_i - b*ui;

% Solve for u(i+1)

u(i+1) = phat/khat;

% Calculate velocity and acceleration

v(i) = (u(i+1)-u_i)/(2*dt);

A(i) = (u(i+1)-2*ui + u_i)/(dt^2);

% Reset "in" for first iteration

in = 0;

end
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Appendix C

Abaqus .inp code

Below is the .inp input code for the Abaqus finite element model. The inclusion of the
model’s mesh was removed to save space.

*Heading

** Job name: Inputfileappendix Model name: Model-1

** Generated by: Abaqus/CAE 2019

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=Spont

*End Part

**

*Part, name=Sten

*End Part

**

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=Spont-1, part=Spont

*End Instance

**

*Instance, name=Sten-1, part=Sten

0.348500030469895, 0., -0.237

*End Instance

**

*Element, type=CONN3D2

1, , *Connector Section, elset=Wire-2-Set-1, behavior=Cartesian4

Cartesian,

"Datum csys-1",

*Element, type=CONN3D2

2, , *Connector Section, elset=Wire-14-Set-1, behavior=Cartesian5

Cartesian,

"Datum csys-1",

*Element, type=CONN3D2

3, , *Connector Section, elset=Wire-15-Set-1, behavior=Cartesian6
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Cartesian,

"Datum csys-1",

*Element, type=CONN3D2

4, , *Connector Section, elset=Wire-16-Set-1, behavior=Cartesian7

Cartesian,

"Datum csys-1",

*Element, type=CONN3D2

5, , *Connector Section, elset=Wire-17-Set-1, behavior=Cartesian8

Cartesian,

"Datum csys-1",

*Element, type=CONN3D2

6, , *Connector Section, elset=Wire-18-Set-1, behavior=Cartesian9

Cartesian,

"Datum csys-1",

*Element, type=CONN3D2

7, , *Connector Section, elset=Wire-19-Set-1, behavior=Cartesian10

Cartesian,

"Datum csys-1",

*Element, type=CONN3D2

8, , *Connector Section, elset=Wire-20-Set-1, behavior=Cartesian11

Cartesian,

"Datum csys-1",

*Element, type=CONN3D2

9, , *Connector Section, elset=Wire-21-Set-1, behavior=Cartesian12

Cartesian,

"Datum csys-1",

*Element, type=CONN3D2

10, , *Connector Section, elset=Wire-5-Set-1, behavior=Cartesian3

Cartesian,

"Datum csys-1",

*Elset, elset=Allaconnectors, generate

1, 10, 1

*Elset, elset=Wire-2-Set-1

1,

*Elset, elset=Wire-5-Set-1

10,

*Elset, elset=Wire-14-Set-1

2,

*Elset, elset=Wire-15-Set-1

3,

*Elset, elset=Wire-16-Set-1

4,

*Elset, elset=Wire-17-Set-1

5,

*Elset, elset=Wire-18-Set-1

6,

*Elset, elset=Wire-19-Set-1

7,
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*Elset, elset=Wire-20-Set-1

8,

*Elset, elset=Wire-21-Set-1

9,

*Orientation, name="Datum csys-1"

1., 0., 0., 0., 1., 0.

1, 0.

*Element, type=MASS, elset=Mass_noder_Dynamic_mass_

*Mass, elset=Mass_noder_Dynamic_mass_

273.,

*End Assembly

*Connector Behavior, name=Cartesian4

*Connector Elasticity, component=3

2.1e+06,

*Connector Plasticity, component=3

*Connector Hardening, definition=TABULAR

5250.,0.,0.

*Connector Behavior, name=Cartesian5

*Connector Elasticity, component=3

1.136e+06,

*Connector Plasticity, component=3

*Connector Hardening, definition=TABULAR

2840.,0.,0.

*Connector Behavior, name=Cartesian6

*Connector Elasticity, component=3

896000.,

*Connector Plasticity, component=3

*Connector Hardening, definition=TABULAR

2240.,0.,0.

*Connector Behavior, name=Cartesian7

*Connector Elasticity, component=3

528000.,

*Connector Plasticity, component=3

*Connector Hardening, definition=TABULAR

1320.,0.,0.

*Connector Behavior, name=Cartesian8

*Connector Elasticity, component=3

368000.,

*Connector Plasticity, component=3

*Connector Hardening, definition=TABULAR

920.,0.,0.

*Connector Behavior, name=Cartesian9

*Connector Elasticity, component=3

534800.,

*Connector Plasticity, component=3

*Connector Hardening, definition=TABULAR

1337.,0.,0.

*Connector Behavior, name=Cartesian10
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*Connector Elasticity, component=3

820000.,

*Connector Plasticity, component=3

*Connector Hardening, definition=TABULAR

2050.,0.,0.

*Connector Behavior, name=Cartesian11

*Connector Elasticity, component=3

1.32e+06,

*Connector Plasticity, component=3

*Connector Hardening, definition=TABULAR

3300.,0.,0.

*Connector Behavior, name=Cartesian12

*Connector Elasticity, component=3

1.9e+06,

*Connector Plasticity, component=3

*Connector Hardening, definition=TABULAR

4750.,0.,0.

*Connector Behavior, name=Cartesian3

*Connector Elasticity, component=3

3.76e+06,

*Connector Plasticity, component=3

*Connector Hardening, definition=TABULAR

9400.,0.,0.

*Amplitude, name=Period, definition=PERIODIC

1, 257.61, 0., 0.

0., 1.

**

** MATERIALS

**

*Material, name=Jord

*Density

2300.,

*Elastic

9e+08, 0.3

*Plastic

1.,0.

*Material, name=Stål

*Damping, beta=3.03e-05

*Density

7800.,

*Elastic

2.1e+11, 0.3

*Plastic

3.55e+08,0.

*Material, name=Sten

*Density

2650.,

*Elastic
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5e+10, 0.2

**

** INTERACTION PROPERTIES

**

*Surface Interaction, name="Sten friktion"

*Friction

1e+08,

*Surface Behavior, pressure-overclosure=HARD

**

** PREDEFINED FIELDS

**

** Name: Predefined Field-1 Type: Velocity

*Initial Conditions, type=VELOCITY

Velocity_bc, 3, 0.4

** ----------------------------------------------------------------

**

** STEP: Explicit

**

*Step, name=Explicit, nlgeom=YES

*Dynamic, Explicit

, 0.5

*Bulk Viscosity

0.06, 1.2

**

** BOUNDARY CONDITIONS

**

** Name: Lateral_bc Type: Displacement/Rotation

*Boundary

Lateral_bc, 1, 1

Lateral_bc, 2, 2

** Name: Sten Type: Displacement/Rotation

*Boundary

Sten_bc, 1, 1

Sten_bc, 2, 2

Sten_bc, 3, 3

**

** LOADS

**

** Name: Dynmassa Type: Surface traction

*Dsload, op=NEW, follower=NO, constant resultant=YES

Clamp, TRVEC, 600863., 0., 0., -1.

** Name: Gravity Type: Gravity

*Dload

Gravity, GRAV, 9.81, 0., 0., -1.

** Name: Static Type: Surface traction

*Dsload, op=NEW, follower=NO, constant resultant=YES

Clamp, TRVEC, 250410., 0., 0., -1.

** Name: Surcharge Type: Surface traction
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*Dsload, op=NEW, follower=NO, constant resultant=YES

Clamp, TRVEC, 750000., 0., 0., -1.

** Name: Vibro Type: Surface traction

*Dsload, op=NEW, amplitude=Period, follower=NO, constant resultant=YES

Clamp, TRVEC, 9.954e+06, 0., 0., -1.

**

** INTERACTIONS

**

** Interaction: Stenfriktion

*Contact, op=NEW

*Contact Inclusions, ALL EXTERIOR

*Contact Property Assignment

, , "Sten friktion"

**

** OUTPUT REQUESTS

**

*Restart, write, number interval=1, time marks=NO

**

** FIELD OUTPUT: Whole model

**

*Output, field, time interval=0.001

*Node Output

A, U, V

*Element Output, directions=YES

S,

*Contact Output

CFORCE,

**

** FIELD OUTPUT: Connector

**

*Element Output, elset=Allaconnectors, directions=YES

CTF,

**

** HISTORY OUTPUT: H-Output-1

**

*Output, history, variable=PRESELECT, time interval=0.001

**

** HISTORY OUTPUT: Connector

**

*Output, history, time interval=0.0025

*Element Output, elset=Allaconnectors

CTF1, CTF2, CTF3, CTM1, CTM2, CTM3

*End Step
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